Math, asked by sakshi9020, 11 months ago

if one of the line given by ax^2+2hxy+by^2=0 is perpendicular to px+ qy=0 then show that ap^2+2hpq+by^2=0​

Answers

Answered by MaheswariS
9

\textbf{To prove:}

\boxed{a\,p^2+2h\,pq+b\,q^2=0}

\text{Let the slopes of the pair of straight lines $ax^2+2hxy+by^2=0$}

\text{be $m_1$ and $m_2$}

\text{Then,}

m_1+m_2=\dfrac{-2h}{b}\;\;\text{and}\;\;m_1\,m_2=\dfrac{a}{b}

\text{Slope of the line px+qy=0 is $\dfrac{-p}{q}$}

\text{But one of the lines of $ax^2+2hxy+by^2=0$ is perpendicular to px+qy=0}

\implies\,m_1=\dfrac{q}{p}

\text{Now,}

m_1+m_2=\dfrac{-2h}{b}\;\text{and}\;m_1\,m_2=\dfrac{a}{b}

\implies\,\dfrac{q}{p}+m_2=\dfrac{-2h}{b}\;\text{and}\;(\dfrac{q}{p})m_2=\dfrac{a}{b}

\implies\,\dfrac{q}{p}+m_2=\dfrac{-2h}{b}\;\text{and}\;m_2=\dfrac{ap}{bq}

\implies\,\dfrac{q}{p}+\dfrac{ap}{bq}=\dfrac{-2h}{b}

\implies\,\dfrac{bq^2+ap^2}{bpq}=\dfrac{-2h}{b}

\implies\,\dfrac{bq^2+ap^2}{pq}=-2h

\implies\,bq^2+ap^2=-2h\,pq

\implies\boxed{\bf\,ap^2+2h\,pq+bq^2=0}

Find more:

Find p and q, if the following equation represents a pair of perpendicular lines

2x²+ 4xy – py² + 4x +qy+1=0​

https://brainly.in/question/14981671

Similar questions