Math, asked by Anumaparam, 10 months ago

If one of the lines given by ax^2+2hxy+by^2=0 bisects an angle between coordinate axes then show that (a+b)^2=4h^2 ​

Answers

Answered by Agastya0606
6

Given:  One of the lines given by ax^2+2hxy+by^2=0 bisects an angle between coordinate axes.

To find: Show that (a+b)^2=4h^2.

Solution:

  • Now we have given the equation of pair of lines as : ax^2+2hxy+by^2 =0
  • So it is given thatthe lines bisects the coordinate axis.
  • So then, let the points (x,x) and (−x,x) satisfy the equation.
  • Lets consider some cases.
  • Case 1: Let the point (x,x) satisfy the equation  ax^2+2hxy+by^2 =0 , we get:

            ax^2 +2hx(x)+bx^2 =0

            Taking x^2 common, we get:

            x^2 (a+2h+b)=0

            a+b = −2h        .....................(i)

  • Case 2: Let the point (x,−x) satisfy the equation ax^2+2hxy+by^2 =0 , we get:

            ax^2  +2hx.(−x)+b(−x)^2  =0

            Taking x^2 common, we get:

            x^2 (a−2h+b)=0

            a+b = 2h          ....................(ii)

  • Now from both the equations, we get a + b = ±2
  • So squaring on both sides, we get:

            (a+b)^2 = 4h^2

             Hence proved.

Answer:

         So from above solution we have proved that  (a+b)^2 = 4h^2

Answered by vaishanavi2003
6

Answer:

Given:  One of the lines given by ax^2+2hxy+by^2=0 bisects an angle between coordinate axes.

To find: Show that (a+b)^2=4h^2.

Solution:

Now we have given the equation of pair of lines as : ax^2+2hxy+by^2 =0

So it is given thatthe lines bisects the coordinate axis.

So then, let the points (x,x) and (−x,x) satisfy the equation.

Lets consider some cases.

Case 1: Let the point (x,x) satisfy the equation  ax^2+2hxy+by^2 =0 , we get:

           ax^2 +2hx(x)+bx^2 =0

           Taking x^2 common, we get:

           x^2 (a+2h+b)=0

           a+b = −2h        .....................(i)

Case 2: Let the point (x,−x) satisfy the equation ax^2+2hxy+by^2 =0 , we get:

           ax^2  +2hx.(−x)+b(−x)^2  =0

           Taking x^2 common, we get:

Step-by-step explanation:

Similar questions