Math, asked by eratzinfantry, 1 month ago

if one of the root of x^2+bx+c=0(where b,c are rational numbers) is 2-√3, then b+c is equal to​

Answers

Answered by rajunaga110
3

Step-by-step explanation:

if one of the root is 2-√3

then other root must be 2+√3

so sum of the zeros = -b/1

(2-√3)+(2+√3)=-b

b=-4

and product of the zeros = c/1

(2-√3)(2+√3)=c

(4-3)=c

c=1

so b+c= -4+1=-3

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:1 \: root \: of \:  {x}^{2} + bx + c = 0 \: is \: 2 -  \sqrt{3}

We know, that irrational roots occur in conjugate pairs.

So, Let assume that roots of the equation be

\rm :\longmapsto\: \alpha  = 2 -  \sqrt{3}

and

\rm :\longmapsto\:  \beta   = 2 +  \sqrt{3}

We know, that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha   + \beta  =  -  \: \dfrac{b}{1}

\rm :\longmapsto\:2 -  \sqrt{3} + 2 +  \sqrt{3} =  - b

\rm :\longmapsto\:4=  - b

\rm \implies\:\boxed{ \tt{ \: b \:  =  \:  -  \: 4 \:  \: }}

Now, also we know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: \alpha  \beta  = \dfrac{c}{1}

\rm :\longmapsto\:c = (2 -  \sqrt{3})(2 +  \sqrt{3})

\rm :\longmapsto\:c =  {2}^{2} -  {( \sqrt{3} )}^{2}

\rm :\longmapsto\:c =  4 - 3

\rm \implies\:\boxed{ \tt{ \: c \:  = \: 1\:  \: }}

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: b + c =   \: - \:  4 + 1 \:  =   \: -  \: 3 \: }}}

Additional Information :-

1. For cubic equation

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: roots \: of \: a {x}^{3}  + b {x}^{2} +  cx + d = 0, \: then}

\boxed{ \bf{ \:  \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  + \beta \gamma   +  \gamma \alpha   =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions
Math, 19 days ago