Math, asked by sakshisharma30966, 7 months ago

if one of the values of x of the equation 2x² - 6x +k =0 be 1/2 ( a+5i) find the values of a and K ?​

Answers

Answered by aryan073
0

Answer:

2(a-5i)²/2-6(a+5i)/2+k=0 is the answer of this question

Answered by Unni007
2

Given equation :  2x - 6x + k = 0

Given root in complex form :  \frac{1}{2}(a+5i)

other root = \frac{1}{2}(a-5i)

Sum of roots

= \frac{1}{2}(a+5i)+\frac{1}{2}(a-5i)

= \frac{1}{2}(a+5i+a-5i)

= -(\frac{-6}{2})

= 3

2a = 3

\boxed{\bold{a=\frac{3}{2}}}

Product of roots =  \frac{k}{2}

= \frac{1}{2}(a+5i)\times \frac{1}{2}(a-5i)

⇒ 2k = a^2-25i^2

⇒ 2k = a^2+25

Substituting the value of a in the equation,

⇒ 2k = (\frac{3}{2})^2+25

⇒ 2k = \frac{9}{4}+25

⇒ 2k = \frac{100+9}{4}

⇒ 2k = \frac{109}{4}

\boxed{\bold{k = \frac{109}{8}}}

Similar questions