Math, asked by vharshvardhankarthik, 1 month ago

If one of the zeroes of the cubic polynomial x3 + ax² + bx + c is -1, then the product of the
other two zeroes is​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: {x}^{3}  +a{x}^{2} +  bx + c}

Then further given that

\rm :\longmapsto\: \alpha  =  - 1

Since, - 1 the zero of the polynomial, it means

\rm :\longmapsto\: {( - 1)}^{3} + a {( - 1)}^{2}  + b( - 1) + c = 0

\rm :\longmapsto\:  - 1+ a  - b+ c = 0

\bf :\longmapsto\: c =  - a + b +  1

Now, we know that,

\boxed{\red{\sf Product\ of\ the\ zeroes= -  \: \frac{Constant}{coefficient\ of\ x^{3}}}}

\rm :\implies\: \alpha  \beta  \gamma  =  -  \: \dfrac{c}{1}

\rm :\longmapsto\:( - 1) \beta  \gamma  =  - c

\rm :\longmapsto\: \beta  \gamma  = c

\rm :\longmapsto\: \beta  \gamma  =  - a + b + 1

Additional Information :-

For cubic polynomial

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \rm{  \alpha  +  \beta  +  \gamma  =  -  \: \dfrac{b}{a} }}

\boxed{ \rm{  \alpha  \beta  +  \beta \gamma   +  \gamma  \alpha  =   \: \dfrac{c}{a} }}

\boxed{ \rm{  \alpha  \beta  \gamma  =  -  \: \dfrac{d}{a} }}

For quadratic polynomial,

\red{\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \: a {x}^{2}  + b {x} +  c, \: then}

\boxed{ \rm{  \alpha  +  \beta  =  -  \: \dfrac{b}{a}}}

\boxed{ \rm{  \alpha \beta  =  \: \dfrac{c}{a}}}

Similar questions