If one of the zeroes of the cubic polynomial x3 + ax² + bx + c is -1, then the product of the other two zeroes is
Answers
Step-by-step explanation:
(a) Let p(x) = x3 + ax2 + bx + c
Let a, p and y be the zeroes of the given cubic polynomial p(x).
∴ α = -1 [given]
and p(−1) = 0
⇒ (-1)3 + a(-1)2 + b(-1) + c = 0
⇒ -1 + a- b + c = 0
⇒ c = 1 -a + b …(i)
We know that,
\sf{Product\;of\;zeroes = (-1)^{3}\times \frac{constant\;term}{coefficient\;of\;x^{3}}=-\frac{c}{1}}Productofzeroes=(−1)
3
×
coefficientofx
3
constantterm
=−
1
c
αβγ = -c
⇒ (-1)βγ = −c [∴α = -1]
⇒ βγ = c
⇒ βγ = 1 -a + b [from Eq. (i)]
Hence, product of the other two roots is 1 -a + b.
HOPE IT IS HELP YOU