Math, asked by srudhiyas9d, 12 days ago

If one of the zeroes of the quadractic polynomial (k-1) x^2 +kx+1 is -3 , then the value of k is ?​

Answers

Answered by abhinavkadam66
0

Step-by-step explanation:

7<bodybgcolor="r"><fontcolor="red">

\begin{gathered}for \: cubic \: polynomial \\ \\ p(x) = {x}^{3} - 4 {x}^{2} + 5x - 2 = 0 \\ \\ sum \: of \: zeros \: = \frac{ - b}{a} = \frac{ - (- 4)}{1} = + 4 \\ \\ sum \: of \: zeros \: = 4 \\ \\ product \: of \: zeros \: = \frac{ - d}{a} = \frac{ - (- 2)}{1} \\ \\ product \: of \: zeros \: = 2 \\ \\ sum \: of \: product \: of \: zeros \: = \frac{c}{a} \\ \\ \frac{5}{1} \\ \\ sum \: of \: product \: of \: zeros \: = 5\end{gathered}

forcubicpolynomial

p(x)=x

3

−4x

2

+5x−2=0

sumofzeros=

a

−b

=

1

−(−4)

=+4

sumofzeros=4

productofzeros=

a

−d

=

1

−(−2)

productofzeros=2

sumofproductofzeros=

a

c

1

5

sumofproductofzeros=5

Similar questions