If one of the zeroes of the quadractic polynomial (k-1) x^2 +kx+1 is -3 , then the value of k is ?
Answers
Answered by
0
Step-by-step explanation:
7<bodybgcolor="r"><fontcolor="red">
\begin{gathered}for \: cubic \: polynomial \\ \\ p(x) = {x}^{3} - 4 {x}^{2} + 5x - 2 = 0 \\ \\ sum \: of \: zeros \: = \frac{ - b}{a} = \frac{ - (- 4)}{1} = + 4 \\ \\ sum \: of \: zeros \: = 4 \\ \\ product \: of \: zeros \: = \frac{ - d}{a} = \frac{ - (- 2)}{1} \\ \\ product \: of \: zeros \: = 2 \\ \\ sum \: of \: product \: of \: zeros \: = \frac{c}{a} \\ \\ \frac{5}{1} \\ \\ sum \: of \: product \: of \: zeros \: = 5\end{gathered}
forcubicpolynomial
p(x)=x
3
−4x
2
+5x−2=0
sumofzeros=
a
−b
=
1
−(−4)
=+4
sumofzeros=4
productofzeros=
a
−d
=
1
−(−2)
productofzeros=2
sumofproductofzeros=
a
c
1
5
sumofproductofzeros=5
Similar questions