If one of the zeroes of the quadratic
polynomia ax² +bx+c, 1 then find
the other zero.
Answers
(a) Let p(x) = x3 + ax2 + bx + c
Let a, p and y be the zeroes of the given cubic polynomial p(x).
∴ α = -1 [given]
and p(−1) = 0
⇒ (-1)3 + a(-1)2 + b(-1) + c = 0
⇒ -1 + a- b + c = 0
⇒ c = 1 -a + b …(i)
We know that,
αβγ = -c
⇒ (-1)βγ = −c [∴α = -1]
⇒ βγ = c
⇒ βγ = 1 -a + b [from Eq. (i)]
Hence, product of the other two roots is 1 -a + b.
Answer:
ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic ustyocigvivicuxydyucic