Math, asked by xXSumanXx, 9 months ago

If one of the zeroes of the quadratic polynomial x² + px + 1 is - 3, then find the value of p ??​

Answers

Answered by pavaning231
1

Answer:

11/34 is the answer of this question

Answered by Anonymous
7

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow p(x)= x^2+px+1

\sf\dashrightarrow one\:of\:the\:zeroes\:the\:polynomial\:is,\:-3

\large\underline\bold{TO\:FIND,}

\sf\large\dashrightarrow THR\:VALUE\:OF\:'p'.

✯.PROPERTY USED,

\sf {\boxed{\bf{\:\: to\:find\:zeroes\:of\:the\:polynomial\:we\:need\:p(x)=0}}}

\large\underline\bold{SOLUTION,}

\sf\therefore p(x)= x^2+px+1

\sf\therefore x=-3

\sf\dashrightarrow  x^2+px+1=0\:-----\big[ by\:given\:property. \big]

PUTTING THE VALUE OF 'x' IN THE GUVEN EQUATION. WE GET,

\sf\implies  x^2+px+1=0

\sf\implies   (-3)^2+p(-3)+1=0

\sf\implies (9)+(-3p)+1=0

\sf\implies 10+(-3p)=0

\sf\implies -3p=-10

\sf\implies \cancel{-} \: 3p = \cancel{-} \: 10

\sf\implies 3p=10

\sf\implies p= \dfrac{10}{3}

\large{\boxed{\bf{\star\:\: p= \dfrac{10}{3}\:\: \star }}}

VERIFICATION,

\sf\therefore p(x)= x^2+px+1

\sf\therefore x=-3

\sf\therefore  p= \dfrac{10}{3}

\sf\implies  (-3)^2+\bigg(\dfrac{10}{3} \bigg)(-3)+1=0

\sf\implies (9)+  \bigg(\dfrac{10}{\cancel{3}} \bigg)(\cancel{-3}) +1=0

\sf\implies 9+ (-10)+1=0

\sf\implies (-1)+1=0

\sf\implies 0=0

\sf\therefore L.H.S=R.H.S

HENCE VERIFYED✔

\large\underline\bold{\therefore \: THE \:VALUE \: OF\:'p'\:IS \dfrac{10}{3}}

_____________________

Similar questions