Math, asked by afrinshah2004, 1 year ago

if one of the zeros of cubic polynomial

x ^{3}  + a {x}^{2}  + bx + c
is -1 then the product of other two zeros is

a)) b - a + 1
b)) b - a - 1
c)) a - b + 1
d)) a - b - 1


ANSWER SOON PLEASE ​

Answers

Answered by Anonymous
127

AnswEr :

\sf{Given\:Polynomial : f(x) = x^3 + ax^2 + bx + c}\\\\\textsf{-1 is a zero of the given polynomial.}\\\\ \textsf{Let $\alpha$ and $\beta$ be other two zeroes of the polynomial.}

\rule{100}{2}

\longrightarrow \tt Sum \:of \:Zeroes = - \dfrac{b}{a} \\ \\ \\\longrightarrow \tt  - 1 + \alpha + \beta = - \dfrac{a}{1} \\ \\ \\\longrightarrow \tt  - 1 + \alpha + \beta =  - a \\ \\ \\\longrightarrow \tt  \alpha + \beta = 1 - a \qquad \dfrac{\quad}{}eq.(1)

\rule{200}{1}

\longrightarrow \tt Sum \:of \:Product \:of \:Zeroes = \dfrac{c}{a} \\ \\ \\\longrightarrow \tt ( - 1 \times  \alpha) + ( \alpha \times \beta) + ( \beta  \times  - 1) = \dfrac{b}{1} \\ \\ \\  \longrightarrow \tt - \alpha +  \alpha  \beta - \beta = b \\ \\ \\\longrightarrow \tt  \alpha  \beta  =  b + (\alpha +\beta) \\ \\ \\\qquad \sf\star \:From\:eq.(1):[(\alpha + \beta) = 1-a] \\\\\\\longrightarrow \large\red{\tt\alpha\beta  = b - a + 1}

⠀⠀

\therefore\boxed{\textsf{Product of Zero will be} \:\boxed{ \sf(a) \:b - a +1}}

Answered by Anonymous
82

❏ Question:-

if one of the zeros of cubic polynomial x ^{3} + a {x}^{2} + bx + c is -1

then the product of other two zeros is

a)) b - a + 1

b)) b - a - 1

c)) a - b + 1

d)) a - b - 1

❏ Solution:-

Now, one zero of the cubic polynomial is = -1

let, it \bf \alpha= -1

Now we have to find \bf \beta\gamma in respect of a and b .

Now, comparing the equation (\bf x ^{3} + a {x}^{2} + bx + c)with (Px³+Qx²+Rx+S) is,

➝ P = 1

➝ Q = a

➝ R = b

➝ S = c

Now,

\sf\longrightarrow\bf \alpha+\beta+\gamma=\frac{-Q}{P}

\sf\longrightarrow\bf (-1)+\beta+\gamma=\frac{-a}{1}

\sf\longrightarrow\bf \beta+\gamma=1-a

Again,

\sf\longrightarrow \bf\alpha\beta+\beta\gamma+\gamma \alpha=\frac{R}{P}

\sf\longrightarrow \bf (-1)\beta+\beta\gamma+\gamma (-1)=\frac{b}{1}

\sf\longrightarrow \bf\beta\gamma =b+(\beta+\gamma)

\sf\longrightarrow \bf\beta\gamma =b+(1-a)

\sf\longrightarrow\bf \boxed{\large{\red{\beta\gamma =b-a+1}}}

Hence, Product of other two zeroes is (b-a+1)

Ans) Option (a) (b-a+1).

━━━━━━━━━━━━━━━━━━━━━━━

Used Concept:-

✦ For a cubic polynomial :-

F(x)=Px³+Qx²+Rx+S

if \alpha\:,\beta\:,\gamma are the three roots of the cubic polynomial F(x).

Then,

\sf\implies \bf\alpha+\beta+\gamma=\frac{-Q}{P}

\sf\implies \bf\alpha\beta+\beta\gamma+\gamma \alpha=\frac{R}{P}

\sf\implies \bf\alpha\beta\gamma=\frac{-S}{P}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

Please rate it if it helps :)

Similar questions