Math, asked by rejani82, 10 months ago

if one of the zeros of the cubic polynomial x cube + ax square + bx + c is equal to minus 1 then prove that the product of the other two zeros is b minus a + 1 ​

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\textsf{One of the zeros of}\;\mathsf{x^3+ax^2+bx+1=0}

\mathsf{is -1}

\underline{\textsf{To prove:}}

\textsf{Product of the two zeros is b-a+1 }

\underline{\textsf{Solution:}}

\textsf{Since one of the zeros is -1,}

\textsf{Sum of the coefficients of odd powers of x}

\textsf{=Sum of the coefficient of even powers of x}

\implies\mathsf{1+b=a+c}........(1)

\textsf{Let the zeros of the given polynomial be l,m and n}

\textsf{Product of the zeros}\mathsf{=\dfrac{c}{-1}}

\mathsf{lmn=-c}

\mathsf{(-1)mn=-c}

\mathsf{mn=c}

\textsf{Using (1), we get}

\mathsf{mn=b-a+1}

\implies\boxed{\textsf{Product of other two zeros = b-a+1}}

Similar questions