Math, asked by nsrivatsa0683, 9 months ago

If one of the zeros of the polynomial 3y^2+13y-p is the reciprocal of the other one then find p

Answers

Answered by Cynefin
17

  \huge{ \sf{ \green{ \mid{ \underline{ \overline{ \pink{work \: out...}}}}}}}

 \large{ \bold{ \red{ \underline{ \underline{ Question..}}}}}

 \sf{If  \:  one  \: of  \: the \:  zeros \:  of \:  the \:  polynomial  \: 3y^2+13y-p \: } \\  \sf{ is  \: the \:  reciprocal \:  of  \: the \:  other \:  one \:  then \:  find \:  p}</p><p>

 \large{ \bold{ \green{ \underline{ \underline{Solution..}}}}}

 \large{ \bold{ \red{ \underline{ \underline{Given...}}}}}

 \sf{if \:  \alpha  \: is \: one \: of \: the \: zeroes \: then \: other \: is \:  \frac{1}{ \alpha } }

 \large{ \bold{ \red{ \underline{ \underline{ to \: find..}}}}}

 \sf{p \: where \: p \: is \: constant(c)}

 \sf{ \to \: let \: p(y) = 3 {y}^{2}  + 13y - p} \\  \\   \sf{\to \: we \: know..} \\  \sf{if \: f(x) = a {x}^{2}  + bx + c} \\  \sf{ \boxed{ \red{sum \: of \: zeroes =  \frac{ - b}{a} }}} \\  \sf{ \boxed{ \red{ product \: of \: zeroes =  \frac{c}{a} }}} \\  \\  \sf{ \to \: by \: comparing \: p(y) \: with \: f(x)} \\ \\   \alpha  +  \frac{1}{ \alpha }  =  \frac{ - 13}{3} ( \alpha  \: and \:  \frac{1}{ \alpha } are \: zeroes \: of \: p(y) \\  \green{ \sf{ \to \: we \: dont \: need \: this}} \\  \\  \alpha  \times  \frac{1}{ \alpha }   =    \sf{ \frac{ - p}{3} } \\   \\ \sf{ =  &gt; 1 =  \frac{ - p}{3} } \\  \\  \sf {  \purple{ \boxed{=  &gt; p =  \frac{ - 1}{3} }}} \\ \\   \sf{ \bold{ \green{\% \: required \: answer...}}}

 \mathcal{ \orange{  \large{ \bold{nothing \: beats \: a \: great \: smile..}}}}

 \mathcal{ \bold{ \large{ \orange{ so...keep \: smiling}}}}

Answered by Hrithiqgupta
2

Answer:

Hey

Here is your answer,

5z^2 + 13z - p = 0

Let the zeroes be alpha and 1/ alpha

Product of zeroes = c/a

Alpha x 1/alpha = -p/5

-p/5 = 1

p = -5  

Similar questions