If one of the zeros of the polynomial x2-px-15=30 is 3 find other root
Answers
Answered by
2
Given, One root is 3
So, x = 3
Substitute x in the given equation,
x^2 - px - 15 = 30
( 3 )^2 - p( 3 ) - 15 = 30
9 - 3p - 15 = 30
9 - 15 - 30 = 3p
- 36 = 3p
- 1 2 = p
Hence,
x^2 - px - 15 - 30 = x^2 - ( - 12 × x ) - 15 - 30
=> x^2 + 12x - 45 = 0
=> x^2 + ( 15 - 3 )x - 45 = 0
=> x^2 + 15x - 3x - 45 = 0
=> x( x + 15 ) - 3( x + 15 ) = 0
=> ( x + 15 )( x - 3 ) = 0
=> x = - 15 or 3
So, x = 3
Substitute x in the given equation,
x^2 - px - 15 = 30
( 3 )^2 - p( 3 ) - 15 = 30
9 - 3p - 15 = 30
9 - 15 - 30 = 3p
- 36 = 3p
- 1 2 = p
Hence,
x^2 - px - 15 - 30 = x^2 - ( - 12 × x ) - 15 - 30
=> x^2 + 12x - 45 = 0
=> x^2 + ( 15 - 3 )x - 45 = 0
=> x^2 + 15x - 3x - 45 = 0
=> x( x + 15 ) - 3( x + 15 ) = 0
=> ( x + 15 )( x - 3 ) = 0
=> x = - 15 or 3
Answered by
5
The given equation is : X² - PX - 15 = 30
P ( X ) = X² - PX - 45 = 0
Substitute X = 3 in P ( x ).
P (3) = (3)² - P × 3 - 45 = 0
=> 9 - 3P - 45 = 0
=> -3P - 36 = 0
=> -3P = 36
=> P = -12
P ( X ) = X² - (-12) × X - 45
P ( X ) = X² + 12X - 45
Sum of zeroes = -B/A
3 + Other zero = -12
Other zero = -15
P ( X ) = X² - PX - 45 = 0
Substitute X = 3 in P ( x ).
P (3) = (3)² - P × 3 - 45 = 0
=> 9 - 3P - 45 = 0
=> -3P - 36 = 0
=> -3P = 36
=> P = -12
P ( X ) = X² - (-12) × X - 45
P ( X ) = X² + 12X - 45
Sum of zeroes = -B/A
3 + Other zero = -12
Other zero = -15
Similar questions