Math, asked by bmuralidhar1977, 4 months ago


If one root is equal to the square of other root of the equation x² + x - k = 0, then k is
a) 0
b) 1
c)-1
d) 2

Answers

Answered by mynightingale
11

Answer:

k=-1

Step-by-step explanation:

let one root be a , other root is a^2

sum of the roots = a+ a^2 = - b/a = -1

so a^2 = -1- a

product of the roots = a^3= -k or a(-1-a) = -k

i.e. ,-a-a^2 = -k or -a-(-1-a) = -k or k = -1

.

.

.

hope it helps

well it can be wrong

Answered by BrainlyPopularman
44

GIVEN :

• One root is equal to the square of other root of the equation + x - k = 0.

TO FIND :

• Value of 'k' = ?

SOLUTION :

We know that –

  \\ \bf  \implies Sum \:  \: of \:  \: roots  =  \dfrac{ - (Coefficient \:  \: of \:  \: x)}{Coefficient \:  \: of \:  \:  {x}^{2} } \\

  \\ \bf  \implies  \alpha  +  { \alpha }^{2} =  \dfrac{ - (1)}{1} \\

  \\ \bf  \implies  \alpha  +  { \alpha }^{2} = - 1\\

  \\ \bf  \implies { \alpha }^{2} +  \alpha + 1 = 0\\

  \\ \bf  \implies  \alpha  =  \dfrac{ - 1 \pm \sqrt{ {(1)}^{2} - 4(1)(1)} }{2(1)} \\

  \\ \bf  \implies  \alpha  =  \dfrac{ - 1 \pm \sqrt{1-4}}{2} \\

  \\ \bf  \implies  \alpha  =  \dfrac{ - 1 \pm \sqrt{ - 3}}{2} \\

  \\ \bf  \implies  \alpha  =  \dfrac{ - 1 \pm \sqrt{3}i}{2} \\

  \\ \bf  \implies  \alpha  =  \dfrac{ - 1 +  \sqrt{3}i}{2},\dfrac{ - 1 - \sqrt{3}i}{2}\\

• We also know that –

  \\ \bf  \implies Product \:  \: of \:  \: roots  =  \dfrac{constent \:  \: term}{Coefficient \:  \: of \:  \:  {x}^{2} } \\

  \\ \bf  \implies ( \alpha )( { \alpha }^{2})=  \dfrac{ - k}{1} \\

  \\ \bf  \implies k =  -  { \alpha }^{3}  \\

▪︎When \bf\alpha  =  \dfrac{ - 1 + \sqrt{3}i}{2} :–

• We should write this as –

  \\ \bf  \implies k =  -  \bigg[\dfrac{ - 1 +  \sqrt{3}i}{2} \bigg]\bigg[\dfrac{ - 1 +  \sqrt{3}i}{2} \bigg] ^{2} \\

  \\ \bf  \implies k =  -  \bigg[\dfrac{ - 1 +  \sqrt{3}i}{2} \bigg]\bigg[\dfrac{ - 1  - \sqrt{3}i}{2} \bigg]\\

  \\ \bf  \implies k =  - \dfrac{1}{4} ( - 1 +  \sqrt{3}i)(- 1  - \sqrt{3}i)\\

  \\ \bf  \implies k =  - \dfrac{1}{4} \{ ( - 1)^{2}  - (\sqrt{3}i)^{2} \}\\

  \\ \bf  \implies k =  - \dfrac{1}{4} \{1- 3(i)^{2} \}\\

 \\\bf \implies k =  - \dfrac{1}{4} \{1- 3( - 1)\}\\

  \\ \bf  \implies k =  - \dfrac{1}{4} (1 + 3)\\

  \\ \bf  \implies k =  - \dfrac{1}{4} (4)\\

  \\ \large\implies{ \boxed{ \bf k =  -1}}\\

▪︎When \bf\alpha  =  \dfrac{ - 1 -\sqrt{3}i}{2} :–

• We should write this as –

  \\ \bf  \implies k =  -  \bigg[\dfrac{ - 1- \sqrt{3}i}{2} \bigg]\bigg[\dfrac{ - 1 -\sqrt{3}i}{2} \bigg] ^{2} \\

  \\ \bf  \implies k =  -  \bigg[\dfrac{ - 1 - \sqrt{3}i}{2} \bigg]\bigg[\dfrac{ - 1+ \sqrt{3}i}{2} \bigg]\\

  \\ \bf  \implies k =  - \dfrac{1}{4} ( - 1 - \sqrt{3}i)(- 1  + \sqrt{3}i)\\

  \\ \bf  \implies k =  - \dfrac{1}{4} \{ ( - 1)^{2}  - (\sqrt{3}i)^{2} \}\\

  \\ \bf  \implies k =  - \dfrac{1}{4} \{1- 3(i)^{2} \}\\

  \\ \bf  \implies k =  - \dfrac{1}{4} \{1- 3( - 1)\}\\

  \\ \bf  \implies k =  - \dfrac{1}{4} (1 + 3)\\

  \\ \bf  \implies k =  - \dfrac{1}{4} (4)\\

  \\ \large\implies{ \boxed{ \bf k =  -1}}\\

Hence Option (c) is correct.

Similar questions