Math, asked by priyanshkumar2407200, 10 months ago

if one root of equation (l-m)x^2+lx+1=0 be double of the other and if l be real , then find maximum possible value of m

Answers

Answered by HeroicGRANDmaster
0

Step-by-step explanation:

The sum of roots is (l−m)−l=3r,

The product of roots is (l−m)1=2r2 where r is one of the roots.

So,   2(l−m)1=9(l−m)2l2

9(l−m)=2l2

2l2−9l+9m=0

For l to real, the discriminant is non−negative.

81≥8×9m

m≤89.

Similar questions