Math, asked by Annalise12, 1 month ago

If one root of quadratic equation ax²+bx+c=0 is 3-4i, then a+b+c=​

Answers

Answered by amansharma264
14

EXPLANATION.

Quadratic equation.

⇒ ax² + bx + c.

One roots of quadratic equation = 3 - 4i.

As we know that,

Let one roots be = 3 - 4i.

Other roots be = 3 + 4i.

Sum of the zeroes of the quadratic equation.

⇒ α + β = - b/a.

⇒ 3 + 4i + 3 - 4i = 6.

Products of zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ (3 - 4i) x (3 + 4i).

As we know that,

Formula of :

⇒ (x² - y²) = (x + y)(x - y).

Put the values in the equation, we get.

⇒ [(3)² - (4i)²]

⇒ 9 - 16i².

⇒ 9 - 16(-1) = 25.

⇒ αβ = 25.

As we know that,

Formula of quadratic equation.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

⇒ x² - (6)x + 25.

⇒ x² - 6x + 25.

As we can see that,

⇒ a = 1  and  b = -6  and  c = 25.

Value of : a + b + c.

⇒ 1 - 6 + 25 = 20.

a + b + c = 20.

                                                                                                                     

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Anonymous
90

Answer:

Given :-

  • If one of quadratic equation
  •  {ax}^{2}  + bx + c  \: \:  \: is \: 3 - 4i

To find :-

  • The value of
  • a+b+c=?

Explanation :-

  • As we know from the question that,
  • one root of the quadratic equation =3-4i.

Let,

  • One root of quadratic equation =3-4i
  • Other root of quadratic equation =3+4i

  • We know that,

  • Sum of the zeroes of quadratic equation is

  •  \alpha  +  \beta  =  \frac{ - b}{a}
  • Applying the values,

  • 3 + 4i + 3 - 4i = 6

And,

  • Product of zeroes Of quadratic equation

  •  \alpha  \beta  =  \frac{c}{a}
  • Apply the values,

  • (3 - 4i) \times (3 + 4i)

Here,

  • We know one formula that

  • ( {x}^{2}  -  {y}^{2} ) = (x + y)(x - y)
  • Now lets put the value in the equation we get that,

  • (( {3)}^{2}  - (4 {i)}^{2} )

  • 9 - 16 {i}^{2}

  • 9 - 16( - 1) = 25. \:  \:  \:  \:  \alpha  \beta  = 25

  • We know the formula of quadratic equation that is ,

  •  {x}^{2}  - ( \alpha  +   \beta )x +  \alpha  \beta
  • Now applying all the values we get that,

  •  {x}^{2}  - 6(x) + 25

  •  {x}^{2}  - 6x + 25
  • Here we can easily see that,
  • value of a=1
  • Value of b=-6
  • Value of c=25.

♧According to the given question,

  • a+b+c=1+(-6)+25=20.

Hope it helps u mate .

Thank you .

Similar questions