Math, asked by skar99623, 1 day ago

if one root of quadratic equation is 4+3i then find quadratic equation


Please help I'll mark brainliest​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

  • One root of the quadratic equation is 4 + 3i

We know,

  • Complex roots occur in conjugate pairs

So,

  • Other root of the quadratic equation is 4 - 3i

So, Let we assume that

\rm :\longmapsto\: \alpha  = 4 + 3i

and

\rm :\longmapsto\: \beta  = 4 - 3i

So,

\rm :\longmapsto\: \alpha  +  \beta  = 4 + 3i + 4 - 3i

\rm :\longmapsto\: \alpha  +  \beta  = 8

Also,

\rm :\longmapsto\: \alpha  \beta  = (4 + 3i)(4 - 3i)

\rm :\longmapsto\: \alpha  \beta  =  {4}^{2} -  {(3i)}^{2}

\rm :\longmapsto\: \alpha  \beta  =  16 - 9 {i}^{2}

\rm :\longmapsto\: \alpha  \beta  =  16 - 9( - 1)

\rm :\longmapsto\: \alpha  \beta  =  16  + 9

\rm :\longmapsto\: \alpha  \beta  =  25

Thus,

The required Quadratic equation is

 \red{\rm :\longmapsto\: {x}^{2} - ( \alpha  +  \beta)x +   \alpha  \beta  = 0}

So, on substituting the values, we get

\bf :\longmapsto\: {x}^{2} - 8x + 25 = 0

Alternative Method :-

Given that,

One root of the quadratic equation is 4 + 3i

\rm \implies\:x = 4 + 3i

\rm \implies\:x - 4 = 3i

On squaring both sides, we get

\rm :\longmapsto\: {(x - 4)}^{2} =  {(3i)}^{2}

\rm :\longmapsto\: {x}^{2} + 16 - 8x = 9 {i}^{2}

\rm :\longmapsto\: {x}^{2} + 16 - 8x =  9( - 1)

\rm :\longmapsto\: {x}^{2} + 16 - 8x =  - 9

\rm :\longmapsto\: {x}^{2} - 8x  + 16 +  9 = 0

\bf :\longmapsto\: {x}^{2} - 8x   + 25 = 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions