Math, asked by prathamchougule1814, 2 months ago

If one root of the equation 2x^2-x-2=0 is alpha, prove that the other root is 4(alpha)^3 - 6alpha - 3/2

Answers

Answered by user0888
95

Question

α is a solution of the equation, hence 2\alpha ^{2}-\alpha -2=0.

We are given to prove \beta =4\alpha ^{3}-6\alpha -\dfrac{3}{2}.

Hint

Try eliminating the leading term.

Vieta's formula, \alpha +\beta =-\dfrac{b}{a} and \alpha \beta =\dfrac{c}{a} for quadratic equation ax^{2}+bx+c=0.

Solution

In the first equation, we can write as \alpha ^{2}=\dfrac{1}{2} \alpha +1.

We try to eliminate the leading term

4\alpha (\dfrac{1}{2} \alpha +1)-6\alpha -\dfrac{3}{2}

=2\alpha ^2+4\alpha -6\alpha -\dfrac{3}{2}

=2(\dfrac{1}{2} \alpha +1)-2\alpha -\dfrac{3}{2}

=\alpha +2-2\alpha -\dfrac{3}{2}

=-\alpha +\dfrac{1}{2}

Now it is enough to prove that \beta =-\alpha +\dfrac{1}{2}. Since it is a quadratic equation, the sum of the roots is \alpha +\beta =\dfrac{1}{2}. This is equivalent to the given equation. \blacksquare

Answered by Anonymous
315

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Given\::- }}}}

The quadratic equation is 2x² - x - 2 = 0

\red{\bigstar}\underline{\underline{\textsf{\textbf{ To \: prove \::- }}}}

β = 4α³ - 6α - 3/2

\red{\bigstar}\underline{\underline{\textsf{\textbf{ How \: to \: Solve \::- }}}}

Let the quadratic equation ax² + bx + c = 0.

\sf \alpha + \beta = - \dfrac{b}{a}

\sf \alpha\beta = \dfrac{c}{a}

• Write equation as 2α² - α - 2 (as α is a solution)

• Now ,  \alpha^2 = \dfrac{1}{2}\alpha + 1

\dashrightarrow\qquad\sf Put \: \alpha^2 = \dfrac{1}{2}\alpha + 1 \:in \: \beta = 4\alpha^3 - 6\alpha - \dfrac{3}{2}

\dashrightarrow\qquad\sf= 4\alpha\bigg(\dfrac{1}{2}\alpha+1 \bigg)- 6\alpha - \dfrac{3}{2}

\dashrightarrow\qquad\sf = 2 \bigg(\dfrac{1}{2}\alpha + 1\bigg) - 2\alpha - \dfrac{3}{2}

\dashrightarrow\qquad\sf = \alpha + 2 - 2\alpha - \dfrac{3}{2}

\dashrightarrow\qquad\sf = - \alpha +\dfrac{1}{2}

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Therefore,\::- }}}}

\sf \beta = - \alpha + \dfrac{1}{2}

\sf  \alpha +  \beta = \dfrac{1}{2}

This is identical to the given equation.

Similar questions