If one root of the equation 2x^2-x-2=0 is alpha, prove that the other root is 4(alpha)^3 - 6alpha - 3/2
Answers
Answered by
95
Question
α is a solution of the equation, hence .
We are given to prove .
Hint
Try eliminating the leading term.
Vieta's formula, and for quadratic equation .
Solution
In the first equation, we can write as .
We try to eliminate the leading term
Now it is enough to prove that . Since it is a quadratic equation, the sum of the roots is . This is equivalent to the given equation.
Answered by
315
The quadratic equation is 2x² - x - 2 = 0
β = 4α³ - 6α - 3/2
Let the quadratic equation ax² + bx + c = 0.
•
•
• Write equation as 2α² - α - 2 (as α is a solution)
• Now ,
•
•
This is identical to the given equation.
Similar questions
Chemistry,
5 days ago
English,
5 days ago
Computer Science,
10 days ago
Science,
7 months ago
Math,
7 months ago