if one root of the equation ax²+bx+c=0 is the cube of the other, prove that,(b²-2ac)²=ca(c+a)²
Answers
Answered by
1
Step-by-step explanation:
How will I prove (b^2-2ac) ^2=CA(c+a) ^2 when one root of the quadratic equation ax^2+bx+c=0 is the cube of the other root?
Watch Nani’s 25th movie V on Amazon Prime Video.
Let the 2 roots of the quadratic equation ax2+bx+c=0 be α,α3
Sum of the roots: α+α3=−ba—(1)
Product of the roots: α.α3=α4=ca
⟹α=(ca)14—(2)
Squaring (1):
(α+α3)2=(−ba)2
⟹α2+α6+2α4=b2a2
⟹α2(1+α4)+2α4=b2a2−−(3)
Substituting (2) in (3):
⟹α2(1+ca)+2ca=b2a2
⟹α2.a+ca=b2a2−2ca=b2−2aca2
⟹α2=b2−2aca(a+c)−−(4)
Squaring (4):
α4=(b2−2aca(a+c))2=(b2−2ac)2a2(a+c)2−−(5)
Substituting (2) in (5):
ca=(b2−2ac)2a2(a+c)2
⟹ac(a+c)2=(b2−2ac)2
Similar questions