Math, asked by insane3, 8 months ago

If one root of the equation x^2-x-k=0 is square of the other, then find k!?? ​

Answers

Answered by Rohith200422
7

Question:

If one root of the equation x² - x - k=0 is square of the other, then find k ?

To find:

★ The value of k.

Answer:

The value of \sf\pink{ \bold{k \:is\: 2± \sqrt{ 5}}}

Given:

★ An equation is given,

 {x}^{2}  - x - k = 0

Step-by-step explanation:

Given that, One root is square of the other ;

Let one root be  \alpha

Let the other root be  {\alpha}^{2}

 {x}^{2}  - x - k = 0

It's of the form,  a{x}^{2}+bx+c=0

Where;

a = 1, b = -1, c = -k

We know that,

 \boxed{Sum \: of \: roots  =  \frac{ - b}{a} }

 \implies \alpha  +  \beta  =  \frac{ - ( - 1)}{1}

 \implies \alpha  +   { \alpha }^{2}   =   1 \: --->(1)

Now,

\leadsto {( \alpha  +  { \alpha }^{2} )}^{3}  = 1

\leadsto  { \alpha }^{3}  +  { \alpha }^{6}  + 3 { \alpha }^{3} ( \alpha  +  { \alpha }^{2}) --->(1)

 \boxed{Product \: of \: roots  =  \frac{ c}{a} }

 \longmapsto  \alpha  \beta  =  \frac{ - k}{1}

 \longmapsto  \alpha   {( \alpha )}^{2}   =  \frac{ - k}{1}

 \longmapsto     { \alpha }^{3}   =  - k

Now substituting the value of  {\alpha}^{3} in eq (1)

 \hookrightarrow  - k +  {k}^{2}  + 3( - k)(1) = 1

 \hookrightarrow    {k}^{2}   - 4 k - 1 =0

Now factorization by formula method:-

 \boxed{k =  \frac{ - b± \sqrt{ {b}^{2} - 4ac \:  } }{2} }

 \hookrightarrow k =  \frac{4± \sqrt{ 16 + 4}  }{2}

 \hookrightarrow  \boxed{k =  2± \sqrt{ 5}  }

 \therefore The value of k is  \bold{2± \sqrt{ 5}}

Formula used:

 \bigstar Sum \: of \: roots  =  \frac{ - b}{a}

 \bigstar Product \: of \: roots  =  \frac{ c}{a}

 \bigstar k =  \dfrac{ - b± \sqrt{ {b}^{2} - 4ac \:  } }{2}

Hint given in the question :

★ One root is square of the other .

One root be  \alpha

Other root be  {\alpha}^{2}

⚠️Note⚠️

We must read the hint properly because it forms the equation.

Similar questions