Math, asked by heisnamindika, 5 months ago

if one root of the equation x²+p x+q=0 be the square of the other , then p³+q²+q=3pq​

Answers

Answered by stutiray40
2

Answer:

If one root of the equation x2+px+q=0 is the square of the other, then how do I show that p3−q(3p−1)+q2=0 ?

For quadratic equation ax2+bx+c=0 :

sum of roots =−b/a

product of roots =c/a

If one root of the equation

x2+px+q=0

is the square of the other, then roots are ω and ω2

sum of roots =−p⟹p=−ω2−ω

product of roots =q⟹q=ω2⋅ω=ω3

p3−q(3p−1)+q2

=(−ω2−ω)3−ω3(3(−ω2−ω)−1)+(ω3)2

=(−ω(ω+1))3−ω3(−3ω2−3ω−1)+ω6

=−ω3(ω3+3ω2+3ω+1)+3ω5+3ω4+ω3+ω6

=−ω6−3ω5−3ω4−ω3+3ω5+3ω4+ω3+ω6

=0

Answered by ItzMagicalpie
45

Question :-

if one root of the equation x²+p x+q=0 be the square of the other , then p³+q²+q=3pq

Solution :-

 \small{ \mathrm{For  \: quadratic  \: equation \:    {ax}^{2} +bx+c=0 :}}

  • sum of roots =−b/a
  • product of roots =c/a

If one root of the equation

 \small{ \mathrm{ {x}^{2} +px+q=0 \: is  \: the \:  square  \: of  \: the \:  other, \:  then  \: roots  \: are  \:  ω  \: and   \:  {ω}^{2} }}

 \small{ \mathrm{sum \:  of \:  roots \:   = \: −p \: ⟹ \: p= \: − {ω}^{2}  \: −ω  \: product  \: of \:  roots \: }}

 \small{ \mathrm{ = \: q \: ⟹ \: q \: = \:  {ω}^{2}  \: ⋅ \: ω \: = \:  {ω}^{3} }}

 \small{ \mathrm{ {p}^{3} −q(3p−1)+ {q}^{2}  {p}^{3} −q(3p−1)+ {q}^{2}  }}

 \small{ \mathrm{=(− {ω}^{2} −ω)^3− {ω}^{3} (3(−ω2−ω)−1)+( {ω}^{3} )^2}}

 \small{ \mathrm{=(−ω(ω+1))^3− {ω}^{3} (−3 {ω}^{2} −3ω−1)+ {ω}^{6} </p><p>}}

 \small{ \mathrm{=−ω^3(ω^3+3ω^2+3ω+1)+3ω^5+3ω^4+ω^3+ω^6}}

 \small{ \mathrm{=−ω^6−3ω^5−3ω^4−ω^3+3ω^5+3ω^4+ω^3+ω^6}}

 \small{ \mathrm{= \: 0}}

Similar questions