Math, asked by ajjubhai50, 5 months ago

if one root of the equation x²+rx-s=0 is the square of the other. prove that r³+s²+3sr-s= 0​

Answers

Answered by madeducators2
8

Given:

Equation x^{2} +rx-s =0

And one root of the given equation is the square root of the other.

To Prove:

We have to prove the relation: r^{3}+s^{2}+3sr-s = 0

Solution:

The given equation is  x^{2}+rx-s =0 , it is aquadratic equation.

We have, the roots of a quadratic equation ax^{2}+bx+c= 0 are \frac{-b+\sqrt{b^{2}-4ac } }{2a} and \frac{-b-\sqrt{b^{2}-4ac } }{2a}

Let us now find the roots of the given equation,

comparing the given equation   x^{2}+rx-s =0 with ax^{2}+bx+c= 0 we get                    a=1, b=r, c= -s

considering the roots of the given equations as x₁ and x₂.

Now  x₁ =  \frac{-b+\sqrt{b^{2}-4ac } }{2a}  =   \frac{-r+\sqrt{r^{2}-4(1)(-s) } }{2(1)}    =     \frac{-r+\sqrt{r^{2}+4s } }{2}  

And   x₂ =  \frac{-b-\sqrt{b^{2}-4ac } }{2a}  =   \frac{-r-\sqrt{r^{2}-4(1)(-s) } }{2(1)}    =      \frac{-r-\sqrt{r^{2}+4s } }{2}

It is given that one root of the equation is the square of the other i.e., x₂=x₁²

                         \frac{-r-\sqrt{r^{2}+4s } }{2}                =   { \frac{-r+\sqrt{r^{2}+4s } }{2} }²  

         

              \frac{-r-\sqrt{r^{2}+4s } }{2}                           =  \frac{1}{4}{ r^{2}+r^{2}+4s-2r\sqrt{r^{2}+4s }}

              -2r-2\sqrt{r^{2}+4s }                    =  2r^{2}+4s-2r\sqrt{r^{2}+4s }

                         -4s-2r-2r^{2}               =  2\sqrt{r^{2}+4s } (1-r)

now squaring on both sides of the equation we get,

                               (-4s-2r-2r^{2})²      =  4(r^{2} +4s)(1-r)²

 16s^{2}+4r^{2}+4r^{4}+16sr+8r^{3}+16sr^{2}        =  (4r^{2}+16s)(1+r^{2}-2r)

       4r^{4}+8r^{3}+4r^{2}+16sr^{2}+16s^{2}+16sr  =  4r^{2}+4r^{4}-8r^{3}+16s+16sr^{2}-32sr

              16r^{3}+r^{2}(16s+4)+16sr+16s^{2}  = r^{2}(16s+4)-32sr

                   16r^{3}+16sr+32sr+16s^{2}    =  0

                   16(r^{3}+3sr+s^{2}-s)              =  0

                        r³+s²+3sr-s = 0

  Hence proved.          

Similar questions