Math, asked by kotechamilan63, 4 days ago

If one root of the quadratic equation 2x² + 5x -3 = 0 is 1/2 then its other root is.​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

↝ Let assume that

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: roots \: of \:  {2x}^{2} + 5x - 3 = 0

↝ As, it is given that, one root of the equation is 1/2.

↝ Let assume that

\rm :\longmapsto\:\boxed{ \tt{ \:  \alpha  =  \frac{1}{2}}}

We know,

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}}

So,

\rm :\longmapsto\: \alpha  \beta  = \dfrac{ - 3}{2}

\rm :\longmapsto\: \dfrac{1}{2}   \times  \beta  = \dfrac{ - 3}{2}

\bf\implies \: \beta  \:  =  \:  -  \: 3

Alternative Method :-

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: \alpha +   \beta  = -  \: \dfrac{5}{2}

\rm :\longmapsto\: \dfrac{1}{2}  +   \beta  = -  \: \dfrac{5}{2}

\rm :\longmapsto\:  \beta  = -  \: \dfrac{5}{2} - \dfrac{1}{2}

\rm :\longmapsto\:  \beta  =  \: \dfrac{ - 5 - 1}{2}

\rm :\longmapsto\:  \beta  =  \: \dfrac{ - 6}{2}

\bf\implies \: \beta  \:  =  \:  -  \: 3

Additional Information :-

1. For cubic equation

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: roots \: of \: a {x}^{3}  + b {x}^{2} +  cx + d = 0, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta  \gamma  +  \gamma  \alpha  =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions