Math, asked by subhadiphalder200, 18 days ago

if one root of the quadratic equation 2xsquare + 12x- m= 0is 1.5 times the other root then find the value of m?
1)-27/8
2)-432/25
3)-288/25
4)-16​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

  • One root of the quadratic equation 2x² + 12x - m = 0 be 1.5 times the other root.

So, Let assume that

\rm :\longmapsto\:roots \: are \:  \alpha  \: and \: 1.5 \:  \alpha

So,

\rm :\longmapsto\: \alpha , \: 1.5 \alpha  \: are \: roots \: of \: {2x}^{2} + 12x - m = 0

We know that

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  + 1.5 \alpha  =  - \dfrac{12}{2}

\rm \implies\:2.5 \alpha  =  - 6

\rm \implies\:\dfrac{5}{2}  \alpha  =  - 6

\bf\implies \: \boxed{ \tt{ \: \alpha  =  -  \: \dfrac{12}{5}  \: }}

Also, We know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  \times 1.5 \alpha  = \dfrac{ - m}{2}

\rm \implies\: \dfrac{3}{2} { \alpha }^{2}  =  - \dfrac{m}{2}

\rm \implies\: {3 \alpha }^{2}  = -  \:  m

\rm \implies\:m =  - 3 \times  {\bigg[\dfrac{ - 12}{5} \bigg]}^{2}

\rm \implies\:m =  - 3 \times  \dfrac{144}{25}

\rm \implies\:\boxed{ \tt{ \: m =  -  \dfrac{432}{25} \: }}

  • So, Option (2) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions