Math, asked by ashokaituc4604, 1 year ago

If one root of the quadratic equation ax2+bx+c=0 is double the other ,then 2b2=________

Answers

Answered by ALTAF11
4
Hi Mate !!!


Given Equation :- ax² + bx + c = 0

It also given that the one root is double of the other.

let  \: \alpha and \:  \beta  \: be \: the \: roots \: of \: the \: equation \:

where \:  \:  \:  \beta  = 2 \alpha

• Sum of Roots =
 \frac{ - coeff. \: of \: x}{coeff .\: of \:  {x}^{2} }

 \alpha  + 2 \alpha  =  \frac{ - b}{a}


3 \alpha  =  \frac{ - b}{a}


 \alpha  =  \frac{ - b}{3a} .....(i)


• Product of Zeros =
 \frac{constant \: term}{coeff. \: of \:  {x}^{2} }


 \alpha  \times 2 \alpha  =  \frac{c}{a}


2 { \alpha }^{2}  =  \frac{c}{a}

 { \alpha }^{2}  =  \frac{c}{2a} ...(ii)

Putting value of ( i ) in ( ii )

 { \alpha }^{2}  =  \frac{c}{2a}

( { \frac{ - b}{3a}) }^{2}  =  \frac{c}{2a}

 \frac{ {b}^{2} }{9 {a}^{2} }  =  \frac{c}{2a}


 \frac{ {b}^{2} }{9a}  =  \frac{c}{2}


2 {b}^{2}  = 9ac

Hence , 2b² = 9ac !!
Similar questions