Math, asked by aachman68, 10 months ago

if one root of the quadratic equation is 1/√4-√3 then quadratic equation can be​

Answers

Answered by MaheswariS
7

\underline{\textbf{Given:}}

\textsf{One root of a quadratic equation is}\;\mathsf{\dfrac{1}{\sqrt4-\sqrt3}}

\underline{\textbf{To find:}}

\textsf{The quadratic equation whose one of the root is}\;\mathsf{\dfrac{1}{\sqrt4-\sqrt3}}

\underline{\textbf{Solution:}}

\mathsf{Take\;x=\dfrac{1}{\sqrt4-\sqrt3}}

\mathsf{x=\dfrac{1}{\sqrt4-\sqrt3}{\times}\dfrac{\sqrt4+\sqrt3}{\sqrt4+\sqrt3}}

\mathsf{x=\dfrac{\sqrt4+\sqrt3}{(\sqrt4)^2-(\sqrt3)^2}}

\mathsf{x=\dfrac{\sqrt4+\sqrt3}{4-3}}

\mathsf{x=\dfrac{\sqrt4+\sqrt3}{1}}

\mathsf{x=2+\sqrt3}

\textsf{This can be written as,}

\mathsf{x-2=\sqrt3}

\textsf{Squaring on bothsides, we get}

\mathsf{(x-2)^2=3}

\mathsf{x^2+4-4x=3}

\implies\boxed{\bf\,x^2-4x+1=0}

\underline{\textbf{Answer:}}

\mathsf{The\;required\;quadratic\;equation\;is\;x^2-4x+1=0}

Similar questions