Math, asked by RejaniMNair, 2 months ago

if one root of the quadratic polynomial 2 x square - 3 x + P is 3 find the other route also find the value of p​

Answers

Answered by SparklingBoy
33

Given Quadratic Polynomial is

 \sf 2 {x}^{2}   - 3x + p

As one Root is 2

So,

 \sf2(2 {)}^{2}  - 3(2) + p = 0 \\  \\  \implies \sf8 - 6 + p = 0 \\  \\  \implies \sf  \bold{\boxed{ \boxed{p =  - 2}}}

So,

Given Quadratic

Polynomial is:-)

 \sf2 {x}^{2}  - 3x  - 2

Let Second Root be k.

As we know that

 \sf SUM  \: OF  \: ROOTS  =  \frac{3}{2}  \\  \\ \sf 2 + k =  \frac{3}{2}  \\  \\  \sf \boxed{ \boxed{ k =  \frac{ - 1}{2} }}

Which is the second root.

Answered by BrainlyMilitary
37

Given : One Root of Quadratic Polynomial is 2x² - 3x + p is 2 .

Exigency To Find : The other root of Quadratic polynomial.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀GIVEN QUADRATIC POLYNOMIAL : 2x² - 3x + p ,

⠀⠀⠀For , Finding other first we should find value of p :

\qquad:\implies \sf 2x^2 - 3x + p = 0 \:\:\\\\

⠀⠀ Given that ,

⠀⠀⠀⠀⠀⠀▪︎⠀⠀One Zero of the polynomial is 2 .

Therefore,

\qquad:\implies \sf 2x^2 - 3x + p = 0 \:\:\\\\

\qquad:\implies \sf 2(2)^2 - 3(2) + p = 0 \:\:\\\\

\qquad:\implies \sf 2(4) - 3(2) + p = 0 \:\:\\\\

\qquad:\implies \sf 2(4) - 6 + p = 0 \:\:\\\\

\qquad:\implies \sf 8 - 6 + p = 0 \:\:\\\\

\qquad:\implies \sf  p = 6 - 8 \:\:\\\\

\qquad:\implies \sf  p = - 2 \:\:\\\\

\qquad \therefore \pmb{\underline{\purple{\:p\: =\: -2 }} }\:\:\bigstar \\

⠀⠀⠀⠀⠀Therefore , By placing the value of p in Polynomial we get :

⠀⠀⠀⠀⠀⠀▪︎⠀⠀2x² - 3x - 2 = 0 [ as , Quadratic Polynomial ]

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the other root of polynomial be a .

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☆ QUADRATIC POLYNOMIAL : 2x² - 3x - 2 = 0

\qquad \maltese \:\: \underline { \pmb {\bf Sum \:of\:zeroes \:\:(\:\alpha + \beta\:) \:}}\::  \\\\

\qquad \dashrightarrow \sf \alpha +   \beta \:=\: \dfrac{ -\:( Cofficient \:of\:x)\:}{Cofficient \:of\:x^2 \:}\\\\

\qquad \dashrightarrow \sf 2 +  a  \:=\: \dfrac{ \:\:\: -(-3)\:\:}{\:\: 2 \:\;\:}\\\\

\qquad \dashrightarrow \sf 2 +  a  \:=\: \dfrac{ \:\:\: 3\:\:}{\:\: 2 \:\;\:}\\\\

\qquad \dashrightarrow \sf   a  \:=\: \dfrac{ \:\:\: 3\:\:}{\:\: 2 \:\;\:} - 2 \\\\

\qquad \dashrightarrow \sf   a  \:=\: \dfrac{ \:\:\: 3 - 4 \:\:}{\:\: 2 \:\;\:}  \\\\

\qquad \dashrightarrow \sf   a  \:=\: \dfrac{ \:\:\:  - 1\:\:}{\:\: 2 \:\;\:}  \\\\

\qquad \therefore \pmb{\underline{\purple{\:a \: =\:\dfrac{ \:\:\:  - 1\:\:}{\:\: 2 \:\;\:}  }} }\:\:\bigstar \\

⠀⠀⠀⠀⠀⠀▪︎⠀⠀Here , a denotes Other root of Polynomial which is -1 / 2

\therefore \:\underline {\sf Hence, \: The \:other \:root\:of\:Polynomial \:is \: \bf -1/2 .}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\qquad \qquad \boxed {\begin{array}{cc} \bf{\underline {\bigstar\:\: For \: a \:Quadratic \:Polynomial \::}}\\\\ \sf{ Whose \:\:zeroes \:\:are\:\:\alpha \:\&\;\: \beta\:\:} \\\\ 1)\:\: \alpha + \beta \: =\:\dfrac{-b}{a} \quad \bigg\lgroup \bf Sum\:of\;Zeroes \bigg\rgroup \\\\ 2)\:\: \alpha \times \beta \: =\:\dfrac{c}{a} \quad \bigg\lgroup \bf Product \:of\;Zeroes \bigg\rgroup \\\\ \end{array}}

Similar questions