if one roots of the equation 3x²+ax-4=0 is 1, then the other root is:
Answers
Answered by
9
Answer:
Other root is -4/3
Explanation:
Given equation,
⇒ 3x² + ax - 4 = 0
Whose one of the roots is 1.
We need to find the other root.
Let's find ‘a’ first,
By substituting x = 1
⇒ 3(1)² + a(1) - 4 = 0
⇒ 3 + a - 4 = 0
⇒ - 1 + a = 0
⇒ a = 1
∴ a = 1
Now the equation is :-
⇒ 3x² + ax - 4
⇒ 3x² + 1(x) - 4
⇒ 3x² + x - 4
We know,
Product of roots :- Constant term/Coefficient of x
Then,
Product of roots :- -4/3
⇒ one root × other root = -4/3
We have, one root as 1
So,
⇒ 1 × other root = -4/3
⇒ other root = -4/3 ÷ 1
⇒ other root = -4/3
∴ The other root is -4/3
_______________________
Let us check :-
Substituting x as 4/3 in the equation must give us zero.
⇒ 3x² + x - 4
⇒ 3(-4/3)² + (-4/3) - 4
⇒ 3(16/9) - 4/3 - 4
⇒ 16/3 - 4/3 - 4
⇒ 12/3 - 4
⇒ 4 - 4
⇒ 0
Hence, proved !!
Similar questions