Math, asked by Mishalkaur, 1 month ago

If one side of an equilateral triangle is 8 cm, find its area, height and perimeter.​

Answers

Answered by SarcasticKarma
28

Answer:

Given :

  • ✿ Side of an equilateral triangle = 8 cm

\begin{gathered}\end{gathered}

To Find :

  • ✿ Area of Equilateral Triangle

\begin{gathered}\end{gathered}

Using Formula :

\underline{\boxed{\sf{\pink{Area \:of \:an\:equilateral\:triangle=\frac{\sqrt{3}}{4}\: (side)^{2}}}}}

\underline{\boxed{\sf{\pink{Area \:  of  \: an \: triangle =  \dfrac{ 1}{2} \times  base  \times height  }}}}

\underline{\boxed{\sf{\pink{Perimeter \:  of \:  an \: triangle = 3a }}}}

\begin{gathered}\end{gathered}

Solution :

Here

  • All sides of triangle will be 8 cm because it is a equilateral triangle.

\begin{gathered}\end{gathered}

Finding area of equilateral triangle

\begin{gathered} \qquad: \sf\implies \frac{\sqrt{3}}{4}\times 8^{2} \\ \\  \quad : \implies  \sf\frac{\sqrt{3}}{4}\times 8\times 8 \\ \\   \qquad\sf:  \implies 16\sqrt{3}\: cm^{2} \\  \\ \end{gathered}

\bigstar{\underline{\boxed{\pmb{\sf{ Area\:of \: equilateral\:  \triangle=16\sqrt{3}\: cm^{2}}}}}}

Hence, The area of equilateral triangle is 16√3 cm².

\begin{gathered}\end{gathered}

Now, Finding the height of equilateral triangle.

\begin{gathered}  : \implies\sf{Area \:  of  \: Triangle =  \dfrac{ 1}{2} \times  base  \times height } \\  \\  :  \implies  \sf{16\sqrt{3}  =  \dfrac{1}{2}  \times 8  \times  height} \\  \\  :  \implies \sf Height =  \dfrac{(16\sqrt{3}   \times 2)}{8}\\  \\ :  \implies \sf Height =  \frac{32\sqrt{3} }{8}  \\  \\ :  \implies \sf Height =  \frac{ \cancel{32}\sqrt{3} }{\cancel{8}}   \\  \\  :  \implies\sf Height = 4\sqrt{3} \end{gathered}

\bigstar{\underline{\boxed{\pmb{\sf{ Height of Triangle = 4\sqrt{3} }}}}}

Hence, The height of equilateral triangle is 4√3 cm.

\begin{gathered}\end{gathered}

Now, Finding the perimeter of equilateral triangle.

\begin{gathered} \qquad  : \implies\sf Perimeter \:  of \:   \triangle = 3a \\  \\ : \implies\sf Perimeter \:  of  \: \triangle = 3 \times 8 \\  \\  \qquad : \implies\sf Perimeter \:  of  \: \triangle = 24 \: cm\end{gathered}

\bigstar{\underline{\boxed{\pmb{\sf{Perimeter \:  of  \: Triangle = 24 \: cm }}}}}

Hence, The perimeter of equilateral triangle is 24 cm.

\begin{gathered}\end{gathered}

Answer :

  • ✱ The area of equilateral triangle is 16√3 cm².
  • ✱ The height of equilateral triangle is 4√3 cm.
  • ✱The perimeter of equilateral triangle is 24 cm.

Answered by MoodyCloud
36

Answer:

Area is 16√3 cm², Perimeter is 24 cm and height is 4√3.

Step-by-step explanation:

Given :

  • One side of equilateral triangle is 8 cm.

To find :

  • Area, height and perimeter of triangle.

Solution :

All sides of triangle are 8 cm because sides of equilateral triangle are equal.

We know,

Heron's formula :

Area of triangle = s(s - a)(s - b)(s - c)

[Where, s is semi-perimeter a, b and c are sides of triangle]

So,

→ s = Perimeter of triangle/2

→ s = 8 + 8 + 8/2

→ s = 24/2

→ s = 12

Perimeter of triangle is 24 cm.

Semi-perimeter is 12 cm.

Then,

→ Area = √12(12 - 8)(12 - 8)(12 - 8)

→ Area = √12 × 4 × 4 × 4

→ Area = √2 × 2 × 3 × 2 × 2 × 2 × 2 × 2 × 2

→ Area = 2 × 2 × 2 × 2 × √3

Area = 163

Area of triangle is 163 cm².

Now,

We also know,

Area of triangle = 1/2 × base × height

→ 16√3 = 1/2 × 8 × height

→ Height = (16√3 × 2)/8

→ Height = 32√3/8

Height = 43

Thus,

Height of triangle is 43 cm.

Similar questions