Math, asked by alvinunni, 3 months ago

If one zero of 7x²+ 6x + k is the reciprocal of the other,find the value of k.​

Answers

Answered by mathdude500
15

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{a \: polynomial \:  {7x}^{2}  + 6x + k} \\ &\sf{having \: zeroes \: reciprocal \: of \: each \: other} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: find \:  - \begin{cases} &\sf{value \: of \: k}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf \: Let \:  - \begin{cases} &\sf{one \: zero \: be \:  \alpha } \\ &\sf{other \: zero \: be \: \dfrac{1}{ \alpha } } \end{cases}\end{gathered}\end{gathered}

Now

We know

\boxed{\purple{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

OR

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

So,

 \rm \: \rightarrow \:  \alpha  \times \dfrac{1}{ \alpha }  = \dfrac{k}{7}

 \rm :  \implies \:1 \:  =  \: \dfrac{k}{7}

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \:k \:  =  \: 7}}

Remark :-

ShortCut :-

  • If the roots of the polynomial f(x) = ax² + bx + c are reciprocal of each other, then a = c.

Now,

For the given statement,

  • The roots of the polynomial 7x² + 6x + k are reciprocal of each other,

therefore,

  • k = 7.

─━─━─━─━─━─━─━─━─━─━─━─━─

Explore more

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

OR

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \: { \alpha }^{2} +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}   - 2 \alpha  \beta }}

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \: { \alpha }^{3} +  { \beta }^{3}  =  {( \alpha  +  \beta )}^{3}   - 3 \alpha  \beta( \alpha  +  \beta ) }}

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \: {( \alpha  -  \beta )}^{2} =  {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta  }}

Answered by vishalcps1
3

Answer:

the value of p=7

Step by Step explanation:-

We know that, product of the zeroes is c/a

alpha×1/alpha=c/a

alpha and alpha gets cancelled out and we get the remaining product as,

1=c/a

here c/a=p/7

then,1=p/7

when we transpose 7 to the LHS(left hand side)we get the value of p to be 7

thus the value of p=7

hope it helps yu☺️

Similar questions