Math, asked by dqwaou3998, 2 months ago

If one zero of a polynomial p(x) = (k? + 4).x2 + 13x +
4k is reciprocal of the other, then prove that k = 2​

Answers

Answered by Anonymous
16

\fbox\pink{Solution}

(k² + 4)x² + 13x + 4k = 0

The roots of this polynomial are reciprocal of each other.

Let one root be a .

So, the other root will be \tt\purple{\dfrac{1}{a}}

From the equation, the product of root is \tt \purple{ \dfrac{4k}{k {}^{2} + 4 } }

So,

\tt \purple{ a \dfrac{1}{a}   =  \dfrac{4k}{k {}^{2} + 4 }  } \\  \\  \tt \: \purple{ 1 =  \frac{4k}{k {}^{2} + 4 } } \\  \\  \tt  \purple{\twoheadrightarrow \: k {}^{2}  + 4 - 4k = 0 } \\  \\  \tt  \purple{\twoheadrightarrow \: (k - 2) {}^{2}  = 0} \\  \\  \tt\purple{\twoheadrightarrow \: k = 2}

\boxed {\boxed{ \tt  \pink H \purple e \pink n \purple c \pink e, \: \: \:    \purple p \pink r \purple o \pink v\purple e \pink d \: }}

Similar questions