Math, asked by rodriguesanneliese, 5 days ago

if one zero of a quadratic polynomial I 8 and the product of the zeroes is -56,then the quadratic polynomial is​

Answers

Answered by shaktipadaparida
0

GIVEN: One of the zeroes of the polynomial (α)= 18

             Product of the zeroes(α X β) = -56

TO FIND:  The quadratic equation.

SOLUTION:

              As one of the root α is given and the sum of the roots is -56.

 So, the other root of the equation=> (α×β) = -56

                                                         =>  18×β = -56

                                                         =>  β= -56/18

                                                         =>  β= -28/9

Now, to find out the equation of the equation we need the sum of the roots.

             α+β=18+(-28/9)

             9(α+β) =162-28

             9(α+β) = 134

              (α+β) = 134/9

So, now by using the sum and the product of the roots we can easily find the equation.

                   so the equation = x^{2} - (α+β)x^{1} + αβ = 0

hence, the quadratic equation is x^{2} -(134/9)x^{1} + (-56) = 0

                                                    =>x^{2} - 134/9 x^{1} -56 = 0

                                                    =>9x^{2} - 134x^{1} - 56 = 0

                SO, the Quadratic equation is 9x^{2} - 134x^{} - 56 = 0

Similar questions