Math, asked by dheerajduttpant, 1 year ago

if one zero of p(x) =4x^2- (8k^2- 40k) x-9 is negative of the Other, find values of K.

Answers

Answered by Amadeuscho
29
let one root be y and other be -y then sum of roots = -b/a here , 0= 8k^2-40k or 40k=8k^2 or k= 5
Answered by mysticd
4

Answer:

Value \:of \:k = 0 \:Or \:k=5

Step-by-step explanation:

Given one zero of p(x)=4x²-(8k²-40k)x-9 is negative of the other .

Let \:\alpha \:and -\alpha \\are \:two \: zeroes \:of \:p(x)

Compare \:p(x)\:with \\ax^{2}+bx+c, \:we \:get

a=4, \:b =-(8k^{2}-40k),\:c=-9

Sum \:of\:the\: zeroes =\frac{-b}{a}

\implies \alpha+(-\alpha)=\frac{-(8k^{2}-40k)}{4}

\implies 0=\frac{-(8k^{2}-40k)}{4}

\implies 8k^{2}-40k=0

\implies 8k(k-5)=0

\implies 8k=0\:Or \:k-5=0

\implies k = 0 \:Or \:k = 5

Therefore,

Value \:of \:k = 0 \:Or \:k=5

•••♪

Similar questions