If one zero of p(x) 4x² - (8k²-40k)x - 9 is negative of the other, find values
of k.
Answers
Answered by
62
let the first zero be "a"
and second zero be "-a"
sum of zeroes = -b/a
a + (-a) = (8k²-40k)/4
a - a = 2k²-10k
0 = 2k²-10k
0 = 2k (k -5)
2k = 0 , k - 5 = 0
k = 0,. K = 5
hence, k = 5,0
and second zero be "-a"
sum of zeroes = -b/a
a + (-a) = (8k²-40k)/4
a - a = 2k²-10k
0 = 2k²-10k
0 = 2k (k -5)
2k = 0 , k - 5 = 0
k = 0,. K = 5
hence, k = 5,0
dheeraj38:
thnx
Answered by
21
Hi !
Let one zero be "x" , then the other zero is "-x"
p(x) = 4x² - (8k²-40k)x - 9
a = 4
b = - (8k²-40k)
c = -9
sum of zeros = -b/a
x + (-x) = -(-{8k²-40k})/4
0 = 8k² - 40k/4
8k²- 40k = 0
8k² = 40k
cancelling k on both sides ,
8k = 40
k = 40/8
k = 5
----------------------------------------------------------------------------
0 = 8k² - 40k/4
0 = 2k²-10k
0 = 2k²-10k
0 = 2k (k -5)
Here ,
2k = 0 , k - 5 =0
k = 0 , k = 5
Hence,
values of k are 0 and 5
Let one zero be "x" , then the other zero is "-x"
p(x) = 4x² - (8k²-40k)x - 9
a = 4
b = - (8k²-40k)
c = -9
sum of zeros = -b/a
x + (-x) = -(-{8k²-40k})/4
0 = 8k² - 40k/4
8k²- 40k = 0
8k² = 40k
cancelling k on both sides ,
8k = 40
k = 40/8
k = 5
----------------------------------------------------------------------------
0 = 8k² - 40k/4
0 = 2k²-10k
0 = 2k²-10k
0 = 2k (k -5)
Here ,
2k = 0 , k - 5 =0
k = 0 , k = 5
Hence,
values of k are 0 and 5
Similar questions