Math, asked by reenarameshkth123, 1 month ago

if one zero of polynomial 5 x square + PX + 10 is negative of order then find the value of p.​

Answers

Answered by SparklingBoy
35

\large  \dag Question :-

If one zero of polynomial 5x² + px + 10 is negative of other, then find the value of p.

\large  \dag Answer :-

\large\underline{\pink{\underline{ \dashrightarrow\frak{\pmb{\text The  \: \text  Value  \: of  \: p  \: is  \:  \text0 }}}}}

\large  \dag Step by step Explanation :-

 \text{Let one zero of given polynomial}  \\  \rm5x^2 + px + 10  \:  \: be  =  \large\alpha

According To Question As one zero of polynomial

5x² + px + 10 is negative of other,

\large  \rm\dashrightarrow \text{Second zero = } -  \alpha

We Know that, Sum zeros of any quadratic polynomial is :

 \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{Sum =    \frac{ -   \: coefficiant \: of \: x}{ \:  \:  \:  \:  \:  \:  \: coefficiant \: of \: x {}^{2} } }}}

We have the Given Polynomial as 5x² + px + 10 with zeros  \large\sf \alpha   \: \: and \:  -  \alpha

Therefore Using above written formula :

:\longmapsto \rm Sum =  \frac{ - p}{ \:  \: 5}  \\

:\longmapsto \rm  \alpha  + ( -  \alpha ) =  \frac{ - p}{ \:  \: 5}  \\

:\longmapsto \rm  \alpha  -   \alpha  =  \frac{ - p}{ \:  \: 5}  \\

:\longmapsto \rm  - p = 0 \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf p = 0} }}}

\Large\underline{\pink{\underline{\frak{\pmb{\text Hence \: \text  Value \:  of \:  p \:  is  \: \text 0 }}}}}


Ataraxia: Great!! ^^
Similar questions