Math, asked by akashmeena5922, 9 months ago

If one zero of quadratic polynomial is x^2-5x-6 is 6 then find the other 0

Answers

Answered by Anonymous
99

Given:

  • One zero of quadratic polynomial is 6.
  • The quadratic polynomial is x²-5x-6.

To Find:

  • The other zero of the quadratic polynomial.

Answer:

Given quadratic polynomial is x²-5x-6 .

When we equate a quadratic polynomial with 0 , then it becomes quadratic equation.

If 6 is a zero of polynomial , then (x-6) will be a factor of polynomial.

On dividing the polynomial with 0,

\sf{\leadsto \dfrac{x^2-5x-6}{x-6}}

\sf{\leadsto \dfrac{x^2-6x+x-6}{x-6}}

\sf{\leadsto \dfrac{x(x-6)+1(x-6)}{x-6}}

\sf{\leadsto\dfrac{(x+1)\cancel{(x-6)}}{\cancel{x-6}}}

\bf{\leadsto  x+1}

Hence on equating with 0 ,

\sf{\implies x +1=0}

\sf{\implies x = 0-1}

{\underline{\boxed{\red{\bf{\longmapsto x=(-1)}}}}}

Hence the other zero is (-1).

Answered by MaIeficent
19

Step-by-step explanation:

 \sf \red {\underline{\underline{Given:-}}}

  • A quadratic polynomial x² - 5x - 6

  • One of the zero of the quadratic polynomial is 6

 \sf \blue {\underline{\underline{To\:Find:-}}}

  • The other zero of the polynomial

 \sf \green {\underline{\underline{Solution:-}}}

Given, one of the zero is 6

\rm  \pink{Let \: the \: other \: zero \: be \: (y)}

\rm sum \: of \: zeroes \:  = 6 + y

 \rm Product\: of \: zeroes \:  = 6 (x) = 6y

\rm If \: the \: sum \: of \: zeroes \: and \: product \: of \: zeroes \: are \: given:-

 \rm The \: quadratic \: polynomial \: is \: given \: by

\rm \orange{ {x}^{2} - (sum \: of \: zeroes)x + product \: of \: zeroes }

Compare it with x² - 5x - 6

\rightarrow\rm Sum \: of \: zeroes \:  = 5

 \rightarrow\rm 6 + y  = 5

\rightarrow\rm  y  = 5 - 6

 \rightarrow\rm  y  = -1

Let's check the result with product of zeroes

\rightarrow\rm  Product \: of \: zeroes =  - 6

 \rightarrow\rm  6y =  - 6

\rightarrow\rm  y =    \dfrac{ - 6}{ \:  \: 6}

 \rightarrow\rm  y =     - 1

Hence;

\boxed{ \sf \purple{ \therefore \: The \: other \: zero \: of \: the \: polynomial \:  =  - 1}}

Similar questions