Math, asked by sangeetavinod04, 11 months ago

If one zero of quadratic polynomial x square +(p+1)x-6 is 2,then what is the value of P? [sol:p=0]​

Answers

Answered by Anonymous
15

SOLUTION

Let the given polynomial be

 \sf \: p(x) =  {x}^{2}  + (p + 1)x - 6

One of the zeros of the polynomial is 2

NoTE

  • Sum of Zeros : - x coefficient/x² coefficient

  • Product of Zeros : constant term /x² coefficient

Let the other zero be a

Here,

 \tt \: 2a =  - 6 \\  \\  \longrightarrow \:   \boxed{\boxed{ \tt a =  - 3}}

The zeros of the polynomial are 2 and - 3

Also,

 \tt \:  \longrightarrow 2 + ( - 3) =  -  \dfrac{(p + 1)}{1}  \\  \\  \longrightarrow \:  \tt \:  -1 =   - (p + 1) \\  \\   \large{\longrightarrow\:  \boxed{ \boxed{ \tt \: p = 0}}}

Answered by Vamprixussa
11

Given equation,

x^{2} +(p+1)x - 6 = 0

One of the zeroes of the polynomial is 2

Substituting, x = 2, in the first equation, we get,

(2)^{2} +(p+1)2 - 6 = 0

4 + 3p + 2 - 6 = 0

3p + 6 - 6 = 0\\

3p = 0

\underline{\underline{\bold{p=0}}}

\boxed{\boxed{\bold{Therefore, \ the \ value \ of \ p \ is  \ 0.}}}

                                                   


Anonymous: Perfect
Similar questions