Math, asked by ruchi6787, 1 month ago

if one zero of quadratic polynomial x square -x -k is the square of other then find the k​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\: \alpha , { \alpha }^{2} \: are \: zeroes \: of \:  {x}^{2} - x - k

We know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:\alpha \times  {\alpha}^{2}  = \dfrac{ - k}{1}

\bf\implies \: {\alpha}^{3}  \: =  -  \: k

Also,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:\alpha +  {\alpha}^{2}  =  -  \dfrac{( - 1)}{1}  = 1

On cubing both sides, we get

\rm :\longmapsto\: {(\alpha +  {\alpha}^{2} )}^{3} =  {1}^{3}

We know,

 \red{\boxed{ \bf{ \: {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}}}

\rm :\longmapsto\: {\alpha}^{3} +  {\alpha}^{6} + 3 \times \alpha \times  {\alpha}^{2}(\alpha +  {\alpha}^{2}) = 1

As,

\boxed{ \bf{ \: {\alpha}^{3} =  - k \:  \:  \: and \: \:  \:  \alpha +  {\alpha}^{2}  = 1}}

And on substituting these values, we ge

ge\rm :\longmapsto\:  - k +  {( - k)}^{2}  + 3( - k)(1) = 1

ge\rm :\longmapsto\:  - k +  {( - k)}^{2}  + 3( - k)(1) = 1\rm :\longmapsto\: - k +  {k}^{2} - 3k - 1 = 0

ge\rm :\longmapsto\:  - k +  {( - k)}^{2}  + 3( - k)(1) = 1\rm :\longmapsto\: - k +  {k}^{2} - 3k - 1 = 0\rm :\longmapsto\: {k}^{2} - 4k - 1 = 0

ge\rm :\longmapsto\:  - k +  {( - k)}^{2}  + 3( - k)(1) = 1\rm :\longmapsto\: - k +  {k}^{2} - 3k - 1 = 0\rm :\longmapsto\: {k}^{2} - 4k - 1 = 0Its a quadratic in k, so to get the value of k, we use Quadratic Formula,

\rm :\longmapsto\:k = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a}

Here,

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b =  - 4

\rm :\longmapsto\:c =  - 1

So, on substituting the values of a, b, c, we get

\rm :\longmapsto\:k = \dfrac{ - ( - 4) \:  \pm \:  \sqrt{ {( - 4)}^{2} - 4(1)( - 1) } }{2(1)}

\rm :\longmapsto\:k = \dfrac{4 \:  \pm \:  \sqrt{16 + 4 } }{2}

\rm :\longmapsto\:k = \dfrac{4 \:  \pm \:  \sqrt{20} }{2}

\rm :\longmapsto\:k = \dfrac{4 \:  \pm \: 2 \sqrt{5} }{2}

\bf\implies \:k \:  =  \: 2 \:  \pm \:  \sqrt{5}

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta   + \beta \gamma   +  \gamma  \alpha  =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions