Math, asked by Diyaaaa8354, 1 year ago

if one zero of the polynomial 2x^2-5x-(2k+1) is twice the other,find both the zeroes of polynomial and value of'k'

Answers

Answered by ria113
2
Heya !!

Here's your answer..⬇⬇
____________________

p(x) = 2x² - 5x - ( 2k + 1 )


let \:  \:  \alpha  \:  \: be \:  \: one \:  \: zero. \\  \\ other \:  \: zero \:  \: will \:  \: be \:  \: 2 \alpha . \\  \\ sum \:  \: of \:  \: zeros \:  =  \frac{ - b}{a}  \\  \\  \alpha  + 2 \alpha  =  \frac{ - (  -  5)}{2}  \\  \\ 3 \alpha  =  \frac{5}{2}  \\  \\  \alpha  =  \frac{5}{6}  \\  \\ product \:  \: of \:  \: the \:  \: zeros \:  =  \frac{c}{a}  \\  \\  \alpha  \times 2 \alpha  =  \frac{ - (2k + 1)}{2}  \\  \\ 2 {a}^{2}  =  \frac{ - (2k + 1)}{2}  \\  \\ 2 {( \frac{5}{6} )}^{2}  =  \frac{ - (2k + 1)}{2}  \\  \\  \frac{50}{36}  =  \frac{ - (2k + 1)}{2}  \\  \\  50 \times 2 =  - 36(2k + 1) \\  \\ 100 =  - 72k - 36 \\  \\ 100 + 36 =  - 72k \\  \\ 136 =  - 72k \\  \\ k =  \frac{ - 136}{72}  \\  \\ k =  \frac{ - 17}{9}  \\  \\ one \:  \: zero \:  =  \alpha  =  \frac{5}{6}  \\  \\ other \:  \: zero \:  \:  = 2 \alpha  = 2( \frac{5}{6} ) =  \frac{10}{6}  \\  \\
___________________________

Hope it helps..
Thanks :)

AkshithaZayn: Wow!
ria113: (: Thanka
Answered by Anonymous
43

Answer:

Hii User!!

Let, p(x)=2x²-5x-(2k+1). =) eq (i)

Also let, α be one root of equation (i)

=)Then the other root will be 2α.

=)α+2α=-(-5)/2

=) 3α=5/2

=) α=5/6

Here ,α×2α=-(2k+1)/2

=) 2α²=-(2k+1)/2

=) -(2k+1)/2=2×(5/6)²

=) -(2k+1)=4×25/36

=)-2k-1=25/9

= -2k=25/9+1

=) -2k=34/9

=)  k=-34/9×1/2

=) k=-17/9

Hence, the value of k is -17/9

Similar questions