Math, asked by urmikr9129, 1 year ago

If one zero of the polynomial 2x2 – 5x – (2k + 1) is twice the other, find both the zeros of the polynomial and the value of k.

Answers

Answered by ria113
40
Heya !!

Here's your answer..⬇⬇
____________________

p(x) = 2x² - 5x - ( 2k + 1 )


let \:  \:  \alpha  \:  \: be \:  \: one \:  \: zero. \\  \\ other \:  \: zero \:  \: will \:  \: be \:  \: 2 \alpha . \\  \\ sum \:  \: of \:  \: zeros \:  =  \frac{ - b}{a}  \\  \\  \alpha  + 2 \alpha  =  \frac{ - (  -  5)}{2}  \\  \\ 3 \alpha  =  \frac{5}{2}  \\  \\  \alpha  =  \frac{5}{6}  \\  \\ product \:  \: of \:  \: the \:  \: zeros \:  =  \frac{c}{a}  \\  \\  \alpha  \times 2 \alpha  =  \frac{ - (2k + 1)}{2}  \\  \\ 2 {a}^{2}  =  \frac{ - (2k + 1)}{2}  \\  \\ 2 {( \frac{5}{6} )}^{2}  =  \frac{ - (2k + 1)}{2}  \\  \\  \frac{50}{36}  =  \frac{ - (2k + 1)}{2}  \\  \\  50 \times 2 =  - 36(2k + 1) \\  \\ 100 =  - 72k - 36 \\  \\ 100 + 36 =  - 72k \\  \\ 136 =  - 72k \\  \\ k =  \frac{ - 136}{72}  \\  \\ k =  \frac{ - 17}{9}  \\  \\ one \:  \: zero \:  =  \alpha  =  \frac{5}{6}  \\  \\ other \:  \: zero \:  \:  = 2 \alpha  = 2( \frac{5}{6} ) =  \frac{10}{6}  \\  \\
______________________________

Hope it helps..
Thanks :)
Answered by SerenaBochenek
7

Answer:

\text{The value of k is }\frac{-17}{9}\text{and its zeroes are }\frac{5}{6}\text{ and }\frac{5}{3}

Step-by-step explanation:

\text{Given that if one zero of the polynomial }2x^2- 5x -(2k + 1)\text{ is twice the other}

\text{we have to find the zeros of the polynomial and the value of k.}

Let α is one zero of the polynomial.

As one zero is twice the other therefore other zero is 2α

\text{sum of zeroes=}\alpha+2\alpha=\frac{-b}{a}=\frac{-(-5)}{2}=\frac{5}{2}

3\alpha=\frac{5}{2}

\alpha=\frac{5}{2\times 3}=\frac{5}{6}

Other zero=2\alpha=2\times \frac{5}{6}=\frac{5}{3}

\text{Product of zeroes=}\alpha.2\alpha=\frac{c}{a}=\frac{-(2k+1)}{2}

2(\alpha)^2=\frac{-(2k+1)}{2}

2\times 2\times (\frac{5}{6})^2=-2k-1

\frac{25}{9}+1=-2k

k=\frac{-17}{9}

\text{Hence, the value of k is }\frac{-17}{9}\text{and its zeroes are }\frac{5}{6}\text{ and }\frac{5}{3}

Similar questions