If one zero of the polynomial (a 2 +9)x 2 + 13x + 6a is reciprocal of the other. find the value of a.
Answers
Answered by
3
given,α=α,β=1/α
we know that , αβ=c/a
⇒α×1/α=6a/a²+9
⇒1=6a/a²+9
⇒a²+9=6a
⇒a²-6a+9=0
⇒a²-3a-3a+9=0
⇒a(a-3)-3(a-3)=0
⇒(a-3)(a-3)=0
⇒a-3=0
⇒a=3
we know that , αβ=c/a
⇒α×1/α=6a/a²+9
⇒1=6a/a²+9
⇒a²+9=6a
⇒a²-6a+9=0
⇒a²-3a-3a+9=0
⇒a(a-3)-3(a-3)=0
⇒(a-3)(a-3)=0
⇒a-3=0
⇒a=3
Answered by
0
Answer:
Step-by-step explanation:
Mark me brainliest Hala Madrid #BAL
polynomial is (a2+9)x2 + 13x + 6a
Let one zero be b then other zero will be reciprocal of it i.e.1/b.
∴ product of the zeroes = constant term/cofficient of x2 = 1 (as b*1/b = 1)
6a/(a2+9) = 1
⇒ 6a = a2+9
⇒ a2 -6a + 9 = 0
⇒ (a-3)2 = 0
⇒ a - 3 = 0
⇒ a = 3
polynomial will be (32+9)x2 + 13x + 6*3
= 18x2 + 13x + 18
This polynomial will be have imaginary roots because b2-4ac<0
Similar questions