Math, asked by aartirai3744, 11 months ago

If one zero of the polynomial (a2 + 9)x + 13x + 6a is reciprocal of another, then find the value of a.

Answers

Answered by BrainlyPopularman
2

{ \bold{ \green{ \underline{ \underline{ANSWER}} :  - }}}

{ \bold{ \underline{Given \: polynomial}} : -  } \\  \\ { \bold{ \orange{( {a}^{2}  + 9) {x}^{2} + 13x + 6a = 0 }}} \\  \\ { \bold{ \pink{Given \:  \: polynomial  \: \:  have \:  \: raciprocal \: }}} \\  \\ { \bold{ \orange{  =  > \alpha  \beta  = 1 \:  \:  \:  \: (product \:  \: of \:  \: roots)}}} \\  \\ { \bold{ \orange{  =  > \frac{c}{a} = 1 }}} \\  \\ { \bold{ \orange{  =  > \frac{6a}{ { a}^{2}  + 9}  = 1}}} \\  \\ { \bold{ \orange{  =  > {a}^{2}  - 6a + 9 = 0}}} \\  \\ { \bold{ \orange{  \implies   {a}^{2} - 3a - 3a + 9 = 0 }}} \\  \\ { \bold{ \orange{   \implies \: a(a - 3) - 3(a - 3) = 0}}} \\  \\ { \bold{ \orange{   \implies \:  {(a - 3)}^{2}  = 0}}} \\  \\ { \bold{   {\orange{   \implies { \boxed{\: a = 3}}}}}}

{ \bold{ \boxed{\red{\huge{ \mathfrak{FOLLOW \:  \: ME...}}}}}}

Similar questions