If one zero of the polynomial (a²+9)x²+13x+6a is reciprocal of the other, find the value of a.
Answers
Answered by
29
Answer :-
→ a = 3 .
Step-by-step explanation :-
Let one zero of the following polynomial be α .
Then, the other zero is 1/α .
∴ product of zeros = ( α × 1/α ) = 1 .
But, product of zeros = ( constant term )/( coefficient of x² ) = 6a/(a² + 9 ) .
6a/(a² + 9) = 1 .
⇒ a² + 9 = 6a .
⇒ a² + 9 - 6a = 0 .
⇒ a² + 3² - 2(a)(3) = 0 .
⇒ ( a - 3 )² = 0 .
⇒ a - 3 = 0 .
a = 3 .
Hence, a = 3 .
Answered by
11
Answer :-
Product of roots = c/a
⇒ α × 1/α = 6a/(a² + 9)
⇒ 1 = 6a/(a² + 9)
⇒ a² + 9 = 6a
⇒ a² - 6a + 9 = 0
⇒ a² + 9 = 6a
⇒ a² - 6a + 9 = 0
⇒ a² - 3a - 3a + 9 = 0
⇒ a(a - 3) - 3(a - 3) = 0
⇒ (a - 3)(a - 3) = 0
⇒ (a - 3)² = 0
⇒ a = 3
Value of a is 3.
Similar questions
Math,
6 months ago
Physics,
6 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Science,
1 year ago