Math, asked by legend2337, 1 month ago

If one zero of the polynomial ax³ + 7x-6 is 2, find the value of a and other zeros.​Please answer step by step

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\:p(x) =  {ax}^{3} + 7x - 6

It is given that, one zero of polynomial p(x) is 2.

By factor theorem,

\rm :\longmapsto\:p(2) = 0

\rm :\longmapsto\:a {(2)}^{3} + 7 \times 2 - 6 = 0

\rm :\longmapsto\:8a + 14 - 6 = 0

\rm :\longmapsto\:8a + 8= 0

\rm :\longmapsto\:8a  =  -  \:  8

\bf\implies \:a =  - 1

Thus, given polynomial p(x) can be rewritten as

\rm :\longmapsto\:p(x) =  { - x}^{3} + 7x - 6

\rm \:  \:  =  \:  - ( {x}^{3} - 7x + 6)

\rm \:  \:  =  \:  - ( {x}^{3} - x - 6x+ 6)

\rm \:  \:  =  -  \: \bigg(x( {x}^{2} - 1) - 6(x - 1)  \bigg)

\rm \:  \:  =  \:  - \bigg(x(x - 1)(x + 1) - 6(x - 1) \bigg)

\rm \:  \:  =  \:  - (x - 1)\bigg(x(x + 1) - 6\bigg)

\rm \:  \:  =  \:  - (x - 1)\bigg( {x}^{2}  + x - 6\bigg)

\rm \:  \:  =  \:  - (x - 1)\bigg( {x}^{2}  + 3x - 2x - 6\bigg)

\rm \:  \:  =  \:  - (x - 1)\bigg(x(x + 3) - 2(x + 3)\bigg)

\rm \:  \:  =  \:  - (x - 1)(x + 3)(x - 2)

\bf\implies \:p(x) = \:  -  \: (x - 1)(x + 3)(x - 2)

Hence,

\bf :\longmapsto\:Zeroes \: of \: p(x) = 1,  - 3, 2

So,

  • Other zeroes are 1 and - 3

Similar questions