If one zero of the polynomial is (a^2+a)x^2+13x+6a is reciprocal of the Other find the value of a
Answers
Answered by
2
If one of the zero is reciprocal of the other,
let one zero be α
other zero will be 1/α
Product of roots = c/a
⇒ α × 1/α = 6a/(a²+9)
⇒ 1 = 6a/(a²+9)
⇒ a² + 9 = 6a
⇒ a² - 6a + 9 = 0
⇒ a² - 3a - 3a + 9= 0
⇒ a(a-3) -3(a-3) = 0
⇒ (a-3)(a-3) = 0
⇒ (a-3)²= 0
⇒ a = 3
Value of a is 3.
let one zero be α
other zero will be 1/α
Product of roots = c/a
⇒ α × 1/α = 6a/(a²+9)
⇒ 1 = 6a/(a²+9)
⇒ a² + 9 = 6a
⇒ a² - 6a + 9 = 0
⇒ a² - 3a - 3a + 9= 0
⇒ a(a-3) -3(a-3) = 0
⇒ (a-3)(a-3) = 0
⇒ (a-3)²= 0
⇒ a = 3
Value of a is 3.
Sarojtiwari:
a^2+a h ques me a^2 +9 nhi plz solve plz....
Answered by
3
Answer:- a = 3
For a polynomial ax² + bx + c having roots α and β,
α + β = -b/a
αβ = c/a
Refer to attachment for solution.
Attachments:
Similar questions