Math, asked by wahib7806, 8 months ago

if one zero of the polynomial p(×) =×2-6×+k is twice the other then find the value of k

Answers

Answered by Anonymous
5

Solution

Given :-

  • Polynomial , p(x) = x² - 6x + k
  • one zeroes is twice the other

Find :-

  • Find Value of k

Explanation

Let,

A/C to question,

  • First zeroes be = p
  • Second Zeroes be = 2p

Using Formula

Sum of zeroes = -b/a

product of zeroes = c/a

Where,

  • a = coefficient of x²
  • b = coefficient of x
  • c = constant part

Then,

➡ Sum of zeroes = -(-6)/1

➡ p + 2p = 6

➡ 3p = 6

➡ p = 6/3

➡p = 2

Again,

➡ product of zeroes = k/1

➡ p * 2p = k

➡ 2p² = k

Keep value of p

➡ 2 * 2² = k

➡ k = 2 * 4

➡ k = 8

Hence

  • Value of k will be = 8

________________

Answered by MaIeficent
62

Step-by-step explanation:

\bf{\underline{\underline\red{Given:-}}}

  • The polynomial p(x) = x² - 6x + k

  • One zero of the polynomial is twice the other.

\bf{\underline{\underline\blue{To\:Find:-}}}

  • The value of k.

\bf{\underline{\underline\green{Solution:-}}}

The polynomial = x² - 6x + k

Given polynomial is in the form ax² + bx + c

Here:-

• a = 1

• b = -6

• c = k

Let one zero of the polynomial be ' p ' and the other zero will be ' 2p'

As we know that:-

\rm\longrightarrow Sum \: of \: zeroes \:  =  \dfrac{ - b}{ \: a}

\rm\longrightarrow Product\: of \: zeroes \:  =  \dfrac{ c}{ a}

Now:-

\rm\longrightarrow Product\: of \: zeroes \:  =  p \times 2p=  \dfrac{c}{a}

  \rm\longrightarrow p \times 2p=  \dfrac{k}{1}

\rm\longrightarrow 2 {p}^{2} =  {k} ......(i)

\rm\longrightarrow Sum\: of \: zeroes \:  =  p + 2p=  \dfrac{-b}{a}

\rm\longrightarrow   p + 2p=  \dfrac{-(-6)}{1}

\rm\longrightarrow 3p=  6 ......(i)

\rm\longrightarrow  {p}=   \dfrac{  6}{ \:  \: 3}

\rm\longrightarrow  {p}=   2 .......(ii)

Now, Substitute p = 2 in equation (i)

\rm\longrightarrow 2  {p}^{2} =  {k}

\rm\longrightarrow 2  {(2)}^{2} =  {k}

\rm\longrightarrow 2   \times 4 =  {k}

\rm\longrightarrow  k = 8

Therefore:-

  \underline{\boxed{\bf \purple{\longrightarrow  k = 8}} }

Similar questions