Math, asked by gowrishankarraop519, 10 months ago

if one zero of the polynomial P(x) =(a square + 9) X square + 4 x + 68 is reciprocal of other find the value of a

Answers

Answered by ghostpro786
1

Step-by-step explanation:

(a^{2}+9)x^{2} +4x+68=p(x)

take the zeros as p and 1/p

therefore, (a^{2} +9)p^{2}+4p+68=(a^{2}  +9)1/p^{2} +4/p+68=0

=> (a^{2} +9)p^{2} +4p=(a^{2} +9)1/(p^{2} )+4/p=0

=>(a^{2}+9)p^{2}-(a^{2}+9)\frac{1}{p^{2}}+4p-\frac{4}{p}=0

=> [(a^{2}+9)(p^{2}-\frac{1}{p^{2}})]+\frac{4p^{2}-4}{p}=0

=> (a^{2}+9)(p^{2}-\frac{1}{p^{2}})=-\frac{4p^{2}-4}{p}

the rest u can do it

all the best

thank u

plzzz mark me as brainliest

Similar questions