if one zero of the quadratic polynomial 2x square_8x_mis 5/2,then the other zero is
Answers
Answered by
0
2x^2-8x-m=p(x)
But 5/2 is one of the zeroes of p(x)
So, p(5/2)=2×5/2×5/2-8×5/2-m
0 =25/2-20-m
m= - 15/2
So p(x) =2x^2-8x-(-15/2)
=2x^2-8x+15/2
Now we know that
![\alpha + \beta = \frac{ - b}{a} \\ \frac{5}{2} + \beta = \frac{ - ( - 8)}{2} \\ \beta = 4 - \frac{5}{2} \alpha + \beta = \frac{ - b}{a} \\ \frac{5}{2} + \beta = \frac{ - ( - 8)}{2} \\ \beta = 4 - \frac{5}{2}](https://tex.z-dn.net/?f=+%5Calpha+++%2B++%5Cbeta++%3D+++%5Cfrac%7B+-+b%7D%7Ba%7D++%5C%5C++%5Cfrac%7B5%7D%7B2%7D++%2B++%5Cbeta++%3D++%5Cfrac%7B+-+%28+-+8%29%7D%7B2%7D++%5C%5C++%5Cbeta++%3D+4+-++%5Cfrac%7B5%7D%7B2%7D+)
Other zeroes of the polynomial will be
beta= 3/2
But 5/2 is one of the zeroes of p(x)
So, p(5/2)=2×5/2×5/2-8×5/2-m
0 =25/2-20-m
m= - 15/2
So p(x) =2x^2-8x-(-15/2)
=2x^2-8x+15/2
Now we know that
Other zeroes of the polynomial will be
beta= 3/2
Similar questions