If one zeroes of the polynomial (a^2+9)x^2 +13x+6a is the reciprocal of the other, find a
Answers
Answered by
2
Answer:
If one of the zero is reciprocal of the other,
let one zero be α
other zero will be 1/α
Product of roots = c/a
⇒ α × 1/α = 6a/(a²+9)
⇒ 1 = 6a/(a²+9)
⇒ a² + 9 = 6a
⇒ a² - 6a + 9 = 0
⇒ a² - 3a - 3a + 9= 0
⇒ a(a-3) -3(a-3) = 0
⇒ (a-3)(a-3) = 0
⇒ (a-3)²= 0
⇒ a = 3
Value of a is 3.
Answered by
3
Answer:
Step-by-step explanation:
f one of the zero is reciprocal of the other,
let one zero be α
other zero will be 1/α
Product of roots = c/a
⇒ α × 1/α = 6a/(a²+9)
⇒ 1 = 6a/(a²+9)
⇒ a² + 9 = 6a
⇒ a² - 6a + 9 = 0
⇒ a² - 3a - 3a + 9= 0
⇒ a(a-3) -3(a-3) = 0
⇒ (a-3)(a-3) = 0
⇒ (a-3)²= 0
⇒ a = 3
Value of a is 3.
hii how are you vaise aap 10th class me hai haina? vaise mera name utkarsh hai mai ayodhya se hu aap ka intro ?
Similar questions