Math, asked by rhythmrehal2000y, 9 months ago

If p=1/2√3 and q= 1/√3+2 then the value of 7p^2+11 pq-7p2 equals?

Answers

Answered by mysticd
8

/* There is a mistake in the question. It may be like this */

i) p = \frac{1}{(2-\sqrt{3})}

\implies  p = \frac{(2+\sqrt{3})}{(2-\sqrt{3})(2-\sqrt{3})}

\implies  p = \frac{(2+\sqrt{3})}{2^{2}-(\sqrt{3})^{2}}

\implies  p = \frac{(2+\sqrt{3})}{4-3}

\implies p = 2 + \sqrt{3} \: --(1)

ii) q = \frac{1}{(2+\sqrt{3})}

\implies  q = \frac{(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}

\implies  q = \frac{(2-\sqrt{3})}{2^{2}-(\sqrt{3})^{2}}

\implies  q = \frac{(2-\sqrt{3})}{4-3}

\implies q = 2 -\sqrt{3} \: --(2)

 iii ) p+q

 = 2 + \sqrt{3} + 2 -\sqrt{3}

 = 4 \: --(3)

 iv ) p-q

 = 2 + \sqrt{3} -( 2 -\sqrt{3})

 = 2 + \sqrt{3} - 2 +\sqrt{3}

 = 2\sqrt{3} \: --(4)

 v) pq = ( 2 + \sqrt{3})( 2 - \sqrt{3})

 = 2^{2} - (\sqrt{3})^{2}

 = 4 - 3

 = 1\: ---(5)

 \red{ Value \: of \: 7p^{2} + 11pq - 7q^{2} }

 = 7(p^{2} - q^{2}) + 11pq

 = 7(p+q)(p-q) + 11pq

 = 7 \times 4 \times 2\sqrt{3} + 11 \times 1

 = 56\sqrt{3} + 11

Therefore.,

 \red{ Value \: of \: 7p^{2} + 11pq - 7q^{2} }

 \green {= 56\sqrt{3} + 11 }

•••♪

Similar questions